真假:深度学习模型能学会检测谣言吗?

Shiwen Ni, Jiawen Li, Hung-Yu kao
{"title":"真假:深度学习模型能学会检测谣言吗?","authors":"Shiwen Ni, Jiawen Li, Hung-Yu kao","doi":"10.1109/TAAI54685.2021.00030","DOIUrl":null,"url":null,"abstract":"It is difficult for humans to distinguish the true and false of rumors, but current deep learning models can surpass humans and achieve excellent accuracy on many rumor datasets. In this paper, we investigate whether deep learning models that seem to perform well actually learn to detect rumors. We evaluate models on their generalization ability to out-of-domain examples by fine-tuning BERT-based models on five real-world datasets and evaluating against all test sets. The experimental results indicate that the generalization ability of the models on other unseen datasets are unsatisfactory, even common-sense rumors cannot be detected. Moreover, we found through experiments that models take shortcuts and learn absurd knowledge when the rumor datasets have serious data pitfalls. This means that simple modifications to the rumor text based on specific rules will lead to inconsistent model predictions. To more realistically evaluate rumor detection models, we proposed a new evaluation method called paired test (PairT), which requires models to correctly predict a pair of test samples at the same time. Furthermore, we make recommendations on how to better create rumor dataset and evaluate rumor detection model at the end of this paper.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"True or False: Does the Deep Learning Model Learn to Detect Rumors?\",\"authors\":\"Shiwen Ni, Jiawen Li, Hung-Yu kao\",\"doi\":\"10.1109/TAAI54685.2021.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult for humans to distinguish the true and false of rumors, but current deep learning models can surpass humans and achieve excellent accuracy on many rumor datasets. In this paper, we investigate whether deep learning models that seem to perform well actually learn to detect rumors. We evaluate models on their generalization ability to out-of-domain examples by fine-tuning BERT-based models on five real-world datasets and evaluating against all test sets. The experimental results indicate that the generalization ability of the models on other unseen datasets are unsatisfactory, even common-sense rumors cannot be detected. Moreover, we found through experiments that models take shortcuts and learn absurd knowledge when the rumor datasets have serious data pitfalls. This means that simple modifications to the rumor text based on specific rules will lead to inconsistent model predictions. To more realistically evaluate rumor detection models, we proposed a new evaluation method called paired test (PairT), which requires models to correctly predict a pair of test samples at the same time. Furthermore, we make recommendations on how to better create rumor dataset and evaluate rumor detection model at the end of this paper.\",\"PeriodicalId\":343821,\"journal\":{\"name\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI54685.2021.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI54685.2021.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人类很难区分谣言的真假,但目前的深度学习模型可以超越人类,在许多谣言数据集上取得优异的准确性。在本文中,我们研究了似乎表现良好的深度学习模型是否实际上学会了检测谣言。我们通过在五个真实数据集上微调基于bert的模型并对所有测试集进行评估,来评估模型对域外示例的泛化能力。实验结果表明,该模型在其他未知数据集上的泛化能力不理想,甚至无法检测到常识性谣言。此外,我们通过实验发现,当谣言数据集存在严重的数据陷阱时,模型会走捷径,学习荒谬的知识。这意味着基于特定规则对谣言文本的简单修改将导致模型预测不一致。为了更真实地评估谣言检测模型,我们提出了一种新的评估方法,称为配对检验(PairT),该方法要求模型同时正确预测一对测试样本。此外,本文还就如何更好地创建谣言数据集和评估谣言检测模型提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
True or False: Does the Deep Learning Model Learn to Detect Rumors?
It is difficult for humans to distinguish the true and false of rumors, but current deep learning models can surpass humans and achieve excellent accuracy on many rumor datasets. In this paper, we investigate whether deep learning models that seem to perform well actually learn to detect rumors. We evaluate models on their generalization ability to out-of-domain examples by fine-tuning BERT-based models on five real-world datasets and evaluating against all test sets. The experimental results indicate that the generalization ability of the models on other unseen datasets are unsatisfactory, even common-sense rumors cannot be detected. Moreover, we found through experiments that models take shortcuts and learn absurd knowledge when the rumor datasets have serious data pitfalls. This means that simple modifications to the rumor text based on specific rules will lead to inconsistent model predictions. To more realistically evaluate rumor detection models, we proposed a new evaluation method called paired test (PairT), which requires models to correctly predict a pair of test samples at the same time. Furthermore, we make recommendations on how to better create rumor dataset and evaluate rumor detection model at the end of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信