基于Zynq FPGA的中型神经网络近似计算评估

M. Skrbek, P. Kubalík, Martin Kohlík, Jaroslav Borecký, Robert Hülle
{"title":"基于Zynq FPGA的中型神经网络近似计算评估","authors":"M. Skrbek, P. Kubalík, Martin Kohlík, Jaroslav Borecký, Robert Hülle","doi":"10.1109/MECO58584.2023.10155065","DOIUrl":null,"url":null,"abstract":"Integrating artificial intelligence technologies into embedded systems requires efficient implementation of neural networks in hardware. The paper presents a Zynq 7020 FPGA implementation and evaluation of a middle-sized dense neural network based on approximate computation by linearly approximated functions. Three famous benchmarks were used for classification accuracy evaluation and hardware testing. We use our highly pipelined neural hardware architecture that takes weights from block RAMs to save logic resources and enables their update from the processing system. The architecture reaches excellent design scalability, allowing us to estimate the number of neurons implemented in programmable logic based on single-neuron resources. We reached nearly full chip utilization while preserving the high clock freuuency for the FPGA used.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Medium-sized Neural Network using Approximative Computations on Zynq FPGA\",\"authors\":\"M. Skrbek, P. Kubalík, Martin Kohlík, Jaroslav Borecký, Robert Hülle\",\"doi\":\"10.1109/MECO58584.2023.10155065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating artificial intelligence technologies into embedded systems requires efficient implementation of neural networks in hardware. The paper presents a Zynq 7020 FPGA implementation and evaluation of a middle-sized dense neural network based on approximate computation by linearly approximated functions. Three famous benchmarks were used for classification accuracy evaluation and hardware testing. We use our highly pipelined neural hardware architecture that takes weights from block RAMs to save logic resources and enables their update from the processing system. The architecture reaches excellent design scalability, allowing us to estimate the number of neurons implemented in programmable logic based on single-neuron resources. We reached nearly full chip utilization while preserving the high clock freuuency for the FPGA used.\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10155065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10155065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将人工智能技术集成到嵌入式系统中需要在硬件上有效地实现神经网络。本文介绍了一种基于线性逼近函数近似计算的中型密集神经网络的FPGA实现和评估。使用三个著名的基准进行分类精度评估和硬件测试。我们使用高度流水线化的神经硬件架构,从块ram中获取权重,以节省逻辑资源,并使其能够从处理系统中更新。该架构具有出色的设计可扩展性,使我们能够估计基于单个神经元资源的可编程逻辑中实现的神经元数量。我们达到了几乎完全的芯片利用率,同时保留了所用FPGA的高时钟频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of the Medium-sized Neural Network using Approximative Computations on Zynq FPGA
Integrating artificial intelligence technologies into embedded systems requires efficient implementation of neural networks in hardware. The paper presents a Zynq 7020 FPGA implementation and evaluation of a middle-sized dense neural network based on approximate computation by linearly approximated functions. Three famous benchmarks were used for classification accuracy evaluation and hardware testing. We use our highly pipelined neural hardware architecture that takes weights from block RAMs to save logic resources and enables their update from the processing system. The architecture reaches excellent design scalability, allowing us to estimate the number of neurons implemented in programmable logic based on single-neuron resources. We reached nearly full chip utilization while preserving the high clock freuuency for the FPGA used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信