非零二阶非线性磁化率介质中的非线性薛定谔孤子

Q. Guo
{"title":"非零二阶非线性磁化率介质中的非线性薛定谔孤子","authors":"Q. Guo","doi":"10.1088/0954-8998/5/3/001","DOIUrl":null,"url":null,"abstract":"It is demonstrated theoretically for the first time that, under the strong dispersion condition, media with non-zero second-order nonlinear susceptibility can support the soliton propagation as optical fibres do, but the nonlinear index coefficient n2 in the nonlinear Schrodinger equation should be substituted by the effective nonlinear index coefficient defined here. The results obtained here can be easily extended to discuss the other nonlinear effects connected with the nonlinear index coefficient in the media.","PeriodicalId":130003,"journal":{"name":"Quantum Optics: Journal of The European Optical Society Part B","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Nonlinear Schrodinger solitons in media with non-zero second-order nonlinear susceptibility\",\"authors\":\"Q. Guo\",\"doi\":\"10.1088/0954-8998/5/3/001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated theoretically for the first time that, under the strong dispersion condition, media with non-zero second-order nonlinear susceptibility can support the soliton propagation as optical fibres do, but the nonlinear index coefficient n2 in the nonlinear Schrodinger equation should be substituted by the effective nonlinear index coefficient defined here. The results obtained here can be easily extended to discuss the other nonlinear effects connected with the nonlinear index coefficient in the media.\",\"PeriodicalId\":130003,\"journal\":{\"name\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Optics: Journal of The European Optical Society Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/0954-8998/5/3/001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Optics: Journal of The European Optical Society Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0954-8998/5/3/001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

从理论上首次证明了在强色散条件下,具有非零二阶非线性磁化率的介质可以像光纤一样支持孤子的传播,但非线性薛定谔方程中的非线性折射率系数n2需要用本文定义的有效非线性折射率系数代替。所得结果可推广到讨论介质中与非线性折射率系数有关的其他非线性效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Schrodinger solitons in media with non-zero second-order nonlinear susceptibility
It is demonstrated theoretically for the first time that, under the strong dispersion condition, media with non-zero second-order nonlinear susceptibility can support the soliton propagation as optical fibres do, but the nonlinear index coefficient n2 in the nonlinear Schrodinger equation should be substituted by the effective nonlinear index coefficient defined here. The results obtained here can be easily extended to discuss the other nonlinear effects connected with the nonlinear index coefficient in the media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信