{"title":"不确定一步延迟和缺失数据下的UFIR滤波","authors":"Karen J. Uribe-Murcia, Y. Shmaliy","doi":"10.37394/232014.2020.16.21","DOIUrl":null,"url":null,"abstract":"This paper develops the unbiased finite impulse response (UFIR) filter for wireless sensor network (WSN) systems whose measurements are affected by random delays and packet dropout due to inescapable failures in the transmission and sensors. The Bernoulli distribution is used to model delays in arrived measurement data with known transmission probability. The effectiveness of the UFIR filter is compared experimentally to the KF and game theory recursive H1 filter in terms of accuracy and robustness employing the GPS-measured vehicle coordinates transmitted with latency over WSN.","PeriodicalId":151897,"journal":{"name":"WSEAS Transactions on Signal Processing archive","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UFIR Filtering Under Uncertain One-Step Delayed and Missing Data\",\"authors\":\"Karen J. Uribe-Murcia, Y. Shmaliy\",\"doi\":\"10.37394/232014.2020.16.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the unbiased finite impulse response (UFIR) filter for wireless sensor network (WSN) systems whose measurements are affected by random delays and packet dropout due to inescapable failures in the transmission and sensors. The Bernoulli distribution is used to model delays in arrived measurement data with known transmission probability. The effectiveness of the UFIR filter is compared experimentally to the KF and game theory recursive H1 filter in terms of accuracy and robustness employing the GPS-measured vehicle coordinates transmitted with latency over WSN.\",\"PeriodicalId\":151897,\"journal\":{\"name\":\"WSEAS Transactions on Signal Processing archive\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Signal Processing archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232014.2020.16.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Signal Processing archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2020.16.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UFIR Filtering Under Uncertain One-Step Delayed and Missing Data
This paper develops the unbiased finite impulse response (UFIR) filter for wireless sensor network (WSN) systems whose measurements are affected by random delays and packet dropout due to inescapable failures in the transmission and sensors. The Bernoulli distribution is used to model delays in arrived measurement data with known transmission probability. The effectiveness of the UFIR filter is compared experimentally to the KF and game theory recursive H1 filter in terms of accuracy and robustness employing the GPS-measured vehicle coordinates transmitted with latency over WSN.