颤振抑制的Keldysh问题。

N. Kuznetsov, G. Leonov
{"title":"颤振抑制的Keldysh问题。","authors":"N. Kuznetsov, G. Leonov","doi":"10.1063/1.5034578","DOIUrl":null,"url":null,"abstract":"This work is devoted to the Keldysh model of flutter suppression and rigorous approaches to its analysis. To solve the stabilization problem in the Keldysh model we use an analog of direct Lyapunov method for differential inclusions. The results obtained here are compared with the results of Keldysh obtained by the method of harmonic balance (describing function method), which is an approximate method for analyzing the existence of periodic solutions. The limitations of the use of describing function method for the study of systems with dry friction and stationary segment are demonstrated.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Keldysh Problem of Flutter Suppression.\",\"authors\":\"N. Kuznetsov, G. Leonov\",\"doi\":\"10.1063/1.5034578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the Keldysh model of flutter suppression and rigorous approaches to its analysis. To solve the stabilization problem in the Keldysh model we use an analog of direct Lyapunov method for differential inclusions. The results obtained here are compared with the results of Keldysh obtained by the method of harmonic balance (describing function method), which is an approximate method for analyzing the existence of periodic solutions. The limitations of the use of describing function method for the study of systems with dry friction and stationary segment are demonstrated.\",\"PeriodicalId\":166772,\"journal\":{\"name\":\"arXiv: Chaotic Dynamics\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5034578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5034578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

这项工作致力于扑动抑制的Keldysh模型和严格的方法来分析它。为了解决Keldysh模型中的稳定问题,我们使用了一种类似于微分包含的直接Lyapunov方法。本文所得到的结果与Keldysh用调和平衡法(描述函数法)得到的结果进行了比较,调和平衡法是一种分析周期解存在性的近似方法。说明了用描述函数法研究具有干摩擦和静止段的系统的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Keldysh Problem of Flutter Suppression.
This work is devoted to the Keldysh model of flutter suppression and rigorous approaches to its analysis. To solve the stabilization problem in the Keldysh model we use an analog of direct Lyapunov method for differential inclusions. The results obtained here are compared with the results of Keldysh obtained by the method of harmonic balance (describing function method), which is an approximate method for analyzing the existence of periodic solutions. The limitations of the use of describing function method for the study of systems with dry friction and stationary segment are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信