{"title":"射流冷却氯化芳烃的激光光谱","authors":"E. Rohlfing, D. Chandler","doi":"10.1063/1.36871","DOIUrl":null,"url":null,"abstract":"The ultrasensitive and isomerically selective detection of chlorinated aromatic hydrocarbons is currently a problem of particular concern due to the toxic and/or carcinogenic nature of these species and their widespread presence in the environment. In this work laser-induced fluorescence and resonantly enhanced multi photon ionization (REMPI) are applied to a series of mono- and dichloronaphthalenes that are rotationally cooled in a free jet expansion. Both techniques provide isomeric selectivity in the S1-S0 spectral region; however 1 + 2 REMPI is more sensitive. In the REMPI spectra of the dichloronapthalenes (DCNs) the S1-S0 origins of different positional isomers are separated by as much as 424 cm-1. Low resolution time-of-flight (TOF) mass spectra of the DCNs show the REMPI ion fragmentation pattern to be isomer dependent. The additional selectivity that isomer-dependent frag mentation provides is demonstrated by the different relative intensities observed in the parent and fragment ion REMPI spectra of a three-component DCN mixture. Possible extensions of the REMPI technique, including two-color, 1 + 1 REMPI for enhanced sensitivity and high-resolution TOF mass spectrometry for enhanced isomeric selectivy, are discussed.","PeriodicalId":422579,"journal":{"name":"International Laser Science Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser spectroscopy of jet-cooled chlorinated aromatic hydrocarbons\",\"authors\":\"E. Rohlfing, D. Chandler\",\"doi\":\"10.1063/1.36871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ultrasensitive and isomerically selective detection of chlorinated aromatic hydrocarbons is currently a problem of particular concern due to the toxic and/or carcinogenic nature of these species and their widespread presence in the environment. In this work laser-induced fluorescence and resonantly enhanced multi photon ionization (REMPI) are applied to a series of mono- and dichloronaphthalenes that are rotationally cooled in a free jet expansion. Both techniques provide isomeric selectivity in the S1-S0 spectral region; however 1 + 2 REMPI is more sensitive. In the REMPI spectra of the dichloronapthalenes (DCNs) the S1-S0 origins of different positional isomers are separated by as much as 424 cm-1. Low resolution time-of-flight (TOF) mass spectra of the DCNs show the REMPI ion fragmentation pattern to be isomer dependent. The additional selectivity that isomer-dependent frag mentation provides is demonstrated by the different relative intensities observed in the parent and fragment ion REMPI spectra of a three-component DCN mixture. Possible extensions of the REMPI technique, including two-color, 1 + 1 REMPI for enhanced sensitivity and high-resolution TOF mass spectrometry for enhanced isomeric selectivy, are discussed.\",\"PeriodicalId\":422579,\"journal\":{\"name\":\"International Laser Science Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Laser Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.36871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Laser Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.36871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser spectroscopy of jet-cooled chlorinated aromatic hydrocarbons
The ultrasensitive and isomerically selective detection of chlorinated aromatic hydrocarbons is currently a problem of particular concern due to the toxic and/or carcinogenic nature of these species and their widespread presence in the environment. In this work laser-induced fluorescence and resonantly enhanced multi photon ionization (REMPI) are applied to a series of mono- and dichloronaphthalenes that are rotationally cooled in a free jet expansion. Both techniques provide isomeric selectivity in the S1-S0 spectral region; however 1 + 2 REMPI is more sensitive. In the REMPI spectra of the dichloronapthalenes (DCNs) the S1-S0 origins of different positional isomers are separated by as much as 424 cm-1. Low resolution time-of-flight (TOF) mass spectra of the DCNs show the REMPI ion fragmentation pattern to be isomer dependent. The additional selectivity that isomer-dependent frag mentation provides is demonstrated by the different relative intensities observed in the parent and fragment ion REMPI spectra of a three-component DCN mixture. Possible extensions of the REMPI technique, including two-color, 1 + 1 REMPI for enhanced sensitivity and high-resolution TOF mass spectrometry for enhanced isomeric selectivy, are discussed.