分数阶离散神经网络的鲁棒控制

Mellah Mohamed, Ouannas Adel
{"title":"分数阶离散神经网络的鲁棒控制","authors":"Mellah Mohamed, Ouannas Adel","doi":"10.1109/ICRAMI52622.2021.9585959","DOIUrl":null,"url":null,"abstract":"This paper aims to present a general approach to control fractional discrete neural networks. We prove a new theorem, which ensures the stabilization of some fractional discrete neural networks class’s utilzing the Lyapunov approach. A numerical example and simulation results are reported to confirm the stabilization approach efficiency.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Control of Fractional Discrete Neural Networks\",\"authors\":\"Mellah Mohamed, Ouannas Adel\",\"doi\":\"10.1109/ICRAMI52622.2021.9585959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to present a general approach to control fractional discrete neural networks. We prove a new theorem, which ensures the stabilization of some fractional discrete neural networks class’s utilzing the Lyapunov approach. A numerical example and simulation results are reported to confirm the stabilization approach efficiency.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提出一种控制分数阶离散神经网络的通用方法。利用李雅普诺夫方法证明了一类分数阶离散神经网络的镇定性。数值算例和仿真结果验证了该稳定化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Control of Fractional Discrete Neural Networks
This paper aims to present a general approach to control fractional discrete neural networks. We prove a new theorem, which ensures the stabilization of some fractional discrete neural networks class’s utilzing the Lyapunov approach. A numerical example and simulation results are reported to confirm the stabilization approach efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信