基于情感和情感知识共享的基于Transformer的集成学习仇恨语音检测

Prashant Kapil, Asif Ekbal
{"title":"基于情感和情感知识共享的基于Transformer的集成学习仇恨语音检测","authors":"Prashant Kapil, Asif Ekbal","doi":"10.5121/csit.2022.121014","DOIUrl":null,"url":null,"abstract":"In recent years, the increasing propagation of hate speech on social media has encouraged researchers to address the problem of hateful content identification. To build an efficient hate speech detection model, a large number of annotated data is needed to train the model. To solve this approach we utilized eleven datasets from the hate speech domain and compared different transformer encoder-based approaches such as BERT, and ALBERT in single-task learning and multi-task learning (MTL) framework. We also leveraged the eight sentiment and emotion analysis datasets in the training to enrich the features in the MTL setting. The stacking based ensemble of BERT-MTL and ALBERT-MTL is utilized to combine the features from best two models. The experiments demonstrate the efficacy of the approach by attaining state-of-the-art results in all the datasets. The qualitative and quantitative error analysis was done to figure out the misclassified tweets and the effect of models on the different data sets.","PeriodicalId":402252,"journal":{"name":"Artificial Intelligence Trends","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer based Ensemble Learning to Hate Speech Detection Leveraging Sentiment and Emotion Knowledge Sharing\",\"authors\":\"Prashant Kapil, Asif Ekbal\",\"doi\":\"10.5121/csit.2022.121014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the increasing propagation of hate speech on social media has encouraged researchers to address the problem of hateful content identification. To build an efficient hate speech detection model, a large number of annotated data is needed to train the model. To solve this approach we utilized eleven datasets from the hate speech domain and compared different transformer encoder-based approaches such as BERT, and ALBERT in single-task learning and multi-task learning (MTL) framework. We also leveraged the eight sentiment and emotion analysis datasets in the training to enrich the features in the MTL setting. The stacking based ensemble of BERT-MTL and ALBERT-MTL is utilized to combine the features from best two models. The experiments demonstrate the efficacy of the approach by attaining state-of-the-art results in all the datasets. The qualitative and quantitative error analysis was done to figure out the misclassified tweets and the effect of models on the different data sets.\",\"PeriodicalId\":402252,\"journal\":{\"name\":\"Artificial Intelligence Trends\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.121014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,社交媒体上仇恨言论的传播越来越多,这促使研究人员解决仇恨内容识别的问题。为了建立高效的仇恨语音检测模型,需要大量带注释的数据来训练模型。为了解决这一问题,我们利用了来自仇恨言论领域的11个数据集,并在单任务学习和多任务学习(MTL)框架中比较了不同的基于转换器编码器的方法,如BERT和ALBERT。我们还利用训练中的八个情绪和情感分析数据集来丰富MTL设置中的特征。利用BERT-MTL和ALBERT-MTL的叠加集成,将两个最佳模型的特征进行组合。通过在所有数据集中获得最先进的结果,实验证明了该方法的有效性。进行定性和定量误差分析,找出错误分类的推文以及模型对不同数据集的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer based Ensemble Learning to Hate Speech Detection Leveraging Sentiment and Emotion Knowledge Sharing
In recent years, the increasing propagation of hate speech on social media has encouraged researchers to address the problem of hateful content identification. To build an efficient hate speech detection model, a large number of annotated data is needed to train the model. To solve this approach we utilized eleven datasets from the hate speech domain and compared different transformer encoder-based approaches such as BERT, and ALBERT in single-task learning and multi-task learning (MTL) framework. We also leveraged the eight sentiment and emotion analysis datasets in the training to enrich the features in the MTL setting. The stacking based ensemble of BERT-MTL and ALBERT-MTL is utilized to combine the features from best two models. The experiments demonstrate the efficacy of the approach by attaining state-of-the-art results in all the datasets. The qualitative and quantitative error analysis was done to figure out the misclassified tweets and the effect of models on the different data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信