高保真井建井瞬态水力模型

P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer
{"title":"高保真井建井瞬态水力模型","authors":"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer","doi":"10.2118/196133-ms","DOIUrl":null,"url":null,"abstract":"\n A mathematical model is developed to capture the dynamic features in the wellbore during drilling operations so that it could be used for real-time computations. The model comprises one-dimensional (1D) mud flow solvers, one for the drillpipe and the other for the wellbore annulus including the volume below the drill bit, integrated point models for the bell nipple, bottomhole assembly (BHA) nozzles, 1D shallow water model for the flowline, and point model for the bypass replicating the hydraulic circuit in the drilling rig. The model assumes compressibility of mud for the wellbore section along with its transient gel characteristics. The equations are solved using appropriate explicit numerical solvers and the results capturing the fast transients of the standpipe pressure, bottomhole equivalent circulating density (ECD), and the flow rates during dynamic drilling operations are presented to illustrate the performance of the model with field data.","PeriodicalId":325107,"journal":{"name":"Day 1 Mon, September 30, 2019","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Fidelity Transient Hydraulics Model for Well Construction\",\"authors\":\"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer\",\"doi\":\"10.2118/196133-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A mathematical model is developed to capture the dynamic features in the wellbore during drilling operations so that it could be used for real-time computations. The model comprises one-dimensional (1D) mud flow solvers, one for the drillpipe and the other for the wellbore annulus including the volume below the drill bit, integrated point models for the bell nipple, bottomhole assembly (BHA) nozzles, 1D shallow water model for the flowline, and point model for the bypass replicating the hydraulic circuit in the drilling rig. The model assumes compressibility of mud for the wellbore section along with its transient gel characteristics. The equations are solved using appropriate explicit numerical solvers and the results capturing the fast transients of the standpipe pressure, bottomhole equivalent circulating density (ECD), and the flow rates during dynamic drilling operations are presented to illustrate the performance of the model with field data.\",\"PeriodicalId\":325107,\"journal\":{\"name\":\"Day 1 Mon, September 30, 2019\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, September 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196133-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, September 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196133-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发了一个数学模型来捕捉钻井作业过程中井筒的动态特征,从而可以用于实时计算。该模型包括一维(1D)泥浆流求解器,一个用于钻杆,另一个用于井筒环空(包括钻头下方的体积),钟形短节、底部钻具组合(BHA)喷嘴的综合点模型,流线的一维浅水模型,以及复制钻机液压回路的旁路点模型。该模型假设了井筒段泥浆的可压缩性及其瞬态凝胶特性。利用适当的显式数值求解器对方程进行求解,并给出了动态钻井作业中立管压力、井底等效循环密度(ECD)和流量的快速瞬态变化结果,以说明该模型与现场数据的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Fidelity Transient Hydraulics Model for Well Construction
A mathematical model is developed to capture the dynamic features in the wellbore during drilling operations so that it could be used for real-time computations. The model comprises one-dimensional (1D) mud flow solvers, one for the drillpipe and the other for the wellbore annulus including the volume below the drill bit, integrated point models for the bell nipple, bottomhole assembly (BHA) nozzles, 1D shallow water model for the flowline, and point model for the bypass replicating the hydraulic circuit in the drilling rig. The model assumes compressibility of mud for the wellbore section along with its transient gel characteristics. The equations are solved using appropriate explicit numerical solvers and the results capturing the fast transients of the standpipe pressure, bottomhole equivalent circulating density (ECD), and the flow rates during dynamic drilling operations are presented to illustrate the performance of the model with field data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信