{"title":"实解析次曼度量的极小值的一个正则定理","authors":"H. Sussmann","doi":"10.1109/CDC.2014.7040138","DOIUrl":null,"url":null,"abstract":"We prove, for real-analytic subriemannian metrics, that if a trajectory parametrized by arc-length is an arc-length minimizer, then the trajectory is real-analytic on an open dense subset of its interval of definition.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A regularity theorem for minimizers of real-analytic subriemannian metrics\",\"authors\":\"H. Sussmann\",\"doi\":\"10.1109/CDC.2014.7040138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove, for real-analytic subriemannian metrics, that if a trajectory parametrized by arc-length is an arc-length minimizer, then the trajectory is real-analytic on an open dense subset of its interval of definition.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7040138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A regularity theorem for minimizers of real-analytic subriemannian metrics
We prove, for real-analytic subriemannian metrics, that if a trajectory parametrized by arc-length is an arc-length minimizer, then the trajectory is real-analytic on an open dense subset of its interval of definition.