用人工神经网络解释尿流图

S. Altunay, Z. Telatar, O. Eroğul, E. Aydur
{"title":"用人工神经网络解释尿流图","authors":"S. Altunay, Z. Telatar, O. Eroğul, E. Aydur","doi":"10.1109/SIU.2006.1659698","DOIUrl":null,"url":null,"abstract":"Uroflowmetry is a measuring method, which provides numerical and graphical information about patient's lower urinary tract dynamics by measuring and plotting the rate of change of voided urine volume. The main purpose of the study is to evaluate uroflowmetric data using artificial neural networks (ANN) and provide a pre-diagnostic result for urology specialists. The ANN is trained using back-propagation method and the inputs of ANN are the results of a special feature extraction algorithm, which is designed with the suggestions of urology specialists. System's success is monitored with a set of data, which was already diagnosed by specialists. The outputs of ANN are classified into three groups, namely, \"healthy\", \"possible pathologic\" and \"pathologic\"","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Interpretation of Uroflow Graphs with Artificial Neural Networks\",\"authors\":\"S. Altunay, Z. Telatar, O. Eroğul, E. Aydur\",\"doi\":\"10.1109/SIU.2006.1659698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uroflowmetry is a measuring method, which provides numerical and graphical information about patient's lower urinary tract dynamics by measuring and plotting the rate of change of voided urine volume. The main purpose of the study is to evaluate uroflowmetric data using artificial neural networks (ANN) and provide a pre-diagnostic result for urology specialists. The ANN is trained using back-propagation method and the inputs of ANN are the results of a special feature extraction algorithm, which is designed with the suggestions of urology specialists. System's success is monitored with a set of data, which was already diagnosed by specialists. The outputs of ANN are classified into three groups, namely, \\\"healthy\\\", \\\"possible pathologic\\\" and \\\"pathologic\\\"\",\"PeriodicalId\":415037,\"journal\":{\"name\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE 14th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2006.1659698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

尿流法是一种测量方法,通过测量和绘制空尿量变化率,提供患者下尿路动力学的数值和图形信息。该研究的主要目的是利用人工神经网络(ANN)评估尿流量数据,并为泌尿科专家提供预诊断结果。神经网络采用反向传播方法进行训练,神经网络的输入是一种特殊的特征提取算法的结果,该算法是根据泌尿外科专家的建议设计的。系统的成功是通过一组数据来监测的,这些数据已经被专家诊断出来。人工神经网络的输出分为“健康”、“可能病理”和“病理”三组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretation of Uroflow Graphs with Artificial Neural Networks
Uroflowmetry is a measuring method, which provides numerical and graphical information about patient's lower urinary tract dynamics by measuring and plotting the rate of change of voided urine volume. The main purpose of the study is to evaluate uroflowmetric data using artificial neural networks (ANN) and provide a pre-diagnostic result for urology specialists. The ANN is trained using back-propagation method and the inputs of ANN are the results of a special feature extraction algorithm, which is designed with the suggestions of urology specialists. System's success is monitored with a set of data, which was already diagnosed by specialists. The outputs of ANN are classified into three groups, namely, "healthy", "possible pathologic" and "pathologic"
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信