一种基于Hausdoff距离的网格简化方法

Xuegang Ma, Jinjin Zheng, Yong Shui, Hongjun Zhou, Lianguan Shen
{"title":"一种基于Hausdoff距离的网格简化方法","authors":"Xuegang Ma, Jinjin Zheng, Yong Shui, Hongjun Zhou, Lianguan Shen","doi":"10.1109/WCSE.2012.32","DOIUrl":null,"url":null,"abstract":"This paper describes a novel method for surface mesh simplification. Given an initial surface mesh, the goal is to reduce the number of mesh elements and preserve the geometric approximation as well as the shape quality of the resulting mesh. We present a novel method - triangle contraction to simplify the mesh, and two tolerance areas with respect to the reference mesh have been introduced to preserve the geometry of the surface. The reference mesh is then simplified and optimized in order that the resulting mesh belongs to these tolerance areas.","PeriodicalId":244586,"journal":{"name":"2012 Third World Congress on Software Engineering","volume":"169 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel Method of Mesh Simplification Using Hausdoff Distance\",\"authors\":\"Xuegang Ma, Jinjin Zheng, Yong Shui, Hongjun Zhou, Lianguan Shen\",\"doi\":\"10.1109/WCSE.2012.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel method for surface mesh simplification. Given an initial surface mesh, the goal is to reduce the number of mesh elements and preserve the geometric approximation as well as the shape quality of the resulting mesh. We present a novel method - triangle contraction to simplify the mesh, and two tolerance areas with respect to the reference mesh have been introduced to preserve the geometry of the surface. The reference mesh is then simplified and optimized in order that the resulting mesh belongs to these tolerance areas.\",\"PeriodicalId\":244586,\"journal\":{\"name\":\"2012 Third World Congress on Software Engineering\",\"volume\":\"169 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2012.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2012.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的曲面网格简化方法。给定初始表面网格,目标是减少网格元素的数量,并保持几何近似以及最终网格的形状质量。我们提出了一种新的方法——三角收缩法来简化网格,并引入了相对于参考网格的两个公差区域来保持表面的几何形状。然后对参考网格进行简化和优化,以使所得网格属于这些公差区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Method of Mesh Simplification Using Hausdoff Distance
This paper describes a novel method for surface mesh simplification. Given an initial surface mesh, the goal is to reduce the number of mesh elements and preserve the geometric approximation as well as the shape quality of the resulting mesh. We present a novel method - triangle contraction to simplify the mesh, and two tolerance areas with respect to the reference mesh have been introduced to preserve the geometry of the surface. The reference mesh is then simplified and optimized in order that the resulting mesh belongs to these tolerance areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信