基于稀有属性和双置信度的不平衡数据分类新方法

Yingjie Li, Yixin Yin
{"title":"基于稀有属性和双置信度的不平衡数据分类新方法","authors":"Yingjie Li, Yixin Yin","doi":"10.1109/WKDD.2009.20","DOIUrl":null,"url":null,"abstract":"The major weakness of associative classification is examined. A novel approach for classifying imbalanced dataset is proposed. It is an associative classification. Rules which are un-frequent are used to build the classifier rule set. Besides the confidence of pattern “X→Y”, the confidence of pattern “Y→X” is used in the approach. Further more, only features of rare classes are preserved while training. The good performance of the approach is shown by the experiments.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Approach to Classify Imbalanced Dataset Based on Rare Attributes and Double Confidences\",\"authors\":\"Yingjie Li, Yixin Yin\",\"doi\":\"10.1109/WKDD.2009.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major weakness of associative classification is examined. A novel approach for classifying imbalanced dataset is proposed. It is an associative classification. Rules which are un-frequent are used to build the classifier rule set. Besides the confidence of pattern “X→Y”, the confidence of pattern “Y→X” is used in the approach. Further more, only features of rare classes are preserved while training. The good performance of the approach is shown by the experiments.\",\"PeriodicalId\":143250,\"journal\":{\"name\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Workshop on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WKDD.2009.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了联想分类的主要缺点。提出了一种新的不平衡数据分类方法。这是一种关联分类。不频繁的规则用于构建分类器规则集。该方法除了使用模式“X→Y”的置信度外,还使用模式“Y→X”的置信度。而且,训练时只保留稀有类的特征。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach to Classify Imbalanced Dataset Based on Rare Attributes and Double Confidences
The major weakness of associative classification is examined. A novel approach for classifying imbalanced dataset is proposed. It is an associative classification. Rules which are un-frequent are used to build the classifier rule set. Besides the confidence of pattern “X→Y”, the confidence of pattern “Y→X” is used in the approach. Further more, only features of rare classes are preserved while training. The good performance of the approach is shown by the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信