{"title":"气动Stewart平台冗余作动器的力轨迹生成","authors":"J. Pradipta, K. L. Knierim, O. Sawodny","doi":"10.1109/ICARA.2015.7081203","DOIUrl":null,"url":null,"abstract":"Force distribution is one of the advantage of a redundant parallel manipulator configuration, making the utilization of less powerful actuators feasible. In this contribution, a force trajectory for a redundant actuator in a seven-cylinder pneumatically-actuated Stewart platform is derived analytically using the inverse dynamic model to maximize the benefit of the additional actuator. A feed-forward scheme is proposed with a requirement of good position tracking control. An input/output linearization is applied for the redundant actuator force control design with good force tracking capability. The designed force trajectory generator is implemented in a full-size pneumatically-actuated Stewart platform, and the results show an improvement in form of force reduction on the six outer cylinders and better utilization of the redundant cylinder force capacity.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"481 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Force trajectory generation for the redundant actuator in a pneumatically actuated Stewart platform\",\"authors\":\"J. Pradipta, K. L. Knierim, O. Sawodny\",\"doi\":\"10.1109/ICARA.2015.7081203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Force distribution is one of the advantage of a redundant parallel manipulator configuration, making the utilization of less powerful actuators feasible. In this contribution, a force trajectory for a redundant actuator in a seven-cylinder pneumatically-actuated Stewart platform is derived analytically using the inverse dynamic model to maximize the benefit of the additional actuator. A feed-forward scheme is proposed with a requirement of good position tracking control. An input/output linearization is applied for the redundant actuator force control design with good force tracking capability. The designed force trajectory generator is implemented in a full-size pneumatically-actuated Stewart platform, and the results show an improvement in form of force reduction on the six outer cylinders and better utilization of the redundant cylinder force capacity.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"481 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Force trajectory generation for the redundant actuator in a pneumatically actuated Stewart platform
Force distribution is one of the advantage of a redundant parallel manipulator configuration, making the utilization of less powerful actuators feasible. In this contribution, a force trajectory for a redundant actuator in a seven-cylinder pneumatically-actuated Stewart platform is derived analytically using the inverse dynamic model to maximize the benefit of the additional actuator. A feed-forward scheme is proposed with a requirement of good position tracking control. An input/output linearization is applied for the redundant actuator force control design with good force tracking capability. The designed force trajectory generator is implemented in a full-size pneumatically-actuated Stewart platform, and the results show an improvement in form of force reduction on the six outer cylinders and better utilization of the redundant cylinder force capacity.