保护深度学习3D分类器的压缩感知方法

V. Kravets, B. Javidi, A. Stern
{"title":"保护深度学习3D分类器的压缩感知方法","authors":"V. Kravets, B. Javidi, A. Stern","doi":"10.1364/3d.2022.3f3a.2","DOIUrl":null,"url":null,"abstract":"We overview methods for defending deep learning algorithms from adversarial attacks by compressive 3D sensing. With optical compressive sensing, these methods exhibit outstanding robustness to adaptive attacks.","PeriodicalId":286361,"journal":{"name":"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)","volume":"476 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive Sensing Methods for Defending Deep Learning 3D Classifiers\",\"authors\":\"V. Kravets, B. Javidi, A. Stern\",\"doi\":\"10.1364/3d.2022.3f3a.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We overview methods for defending deep learning algorithms from adversarial attacks by compressive 3D sensing. With optical compressive sensing, these methods exhibit outstanding robustness to adaptive attacks.\",\"PeriodicalId\":286361,\"journal\":{\"name\":\"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)\",\"volume\":\"476 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/3d.2022.3f3a.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/3d.2022.3f3a.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们概述了通过压缩3D感知保护深度学习算法免受对抗性攻击的方法。利用光学压缩感知,这些方法对自适应攻击具有出色的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Sensing Methods for Defending Deep Learning 3D Classifiers
We overview methods for defending deep learning algorithms from adversarial attacks by compressive 3D sensing. With optical compressive sensing, these methods exhibit outstanding robustness to adaptive attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信