从自由文本客户评论中挖掘热点话题的一种基于lda的方法

Chuanming Yu, Xiaoqing Zhang, Huiting Luo
{"title":"从自由文本客户评论中挖掘热点话题的一种基于lda的方法","authors":"Chuanming Yu, Xiaoqing Zhang, Huiting Luo","doi":"10.1109/WISA.2010.20","DOIUrl":null,"url":null,"abstract":"This study examines how the Latent Dirichlet Allocation (LDA) model combined with natural language processing techniques can be used to identify hot topics from free-text customer reviews. To verify the validity of the proposed approach, 21 580 restaurant reviews are collected. Each review is viewed as a probabilistic mixture of latent topics and each topic is treated as a probability distribution over words in a vocabulary. Parameters are estimated with Gibbs sampling, and the hot topics with top words are acquired. The experiments show that this approach could produce satisfactory results.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mining Hot Topics from Free-Text Customer Reviews An LDA-Based Approach\",\"authors\":\"Chuanming Yu, Xiaoqing Zhang, Huiting Luo\",\"doi\":\"10.1109/WISA.2010.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines how the Latent Dirichlet Allocation (LDA) model combined with natural language processing techniques can be used to identify hot topics from free-text customer reviews. To verify the validity of the proposed approach, 21 580 restaurant reviews are collected. Each review is viewed as a probabilistic mixture of latent topics and each topic is treated as a probability distribution over words in a vocabulary. Parameters are estimated with Gibbs sampling, and the hot topics with top words are acquired. The experiments show that this approach could produce satisfactory results.\",\"PeriodicalId\":122827,\"journal\":{\"name\":\"2010 Seventh Web Information Systems and Applications Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Seventh Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2010.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究探讨了如何将潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)模型与自然语言处理技术相结合,从自由文本客户评论中识别热点话题。为了验证建议方法的有效性,我们收集了21 580份餐厅评论。每个评论被视为潜在主题的概率混合,每个主题被视为词汇表中单词的概率分布。采用吉布斯采样法估计参数,获取热门话题和热门词。实验表明,该方法能取得满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Hot Topics from Free-Text Customer Reviews An LDA-Based Approach
This study examines how the Latent Dirichlet Allocation (LDA) model combined with natural language processing techniques can be used to identify hot topics from free-text customer reviews. To verify the validity of the proposed approach, 21 580 restaurant reviews are collected. Each review is viewed as a probabilistic mixture of latent topics and each topic is treated as a probability distribution over words in a vocabulary. Parameters are estimated with Gibbs sampling, and the hot topics with top words are acquired. The experiments show that this approach could produce satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信