Ke Zhou, Si Sun, Hua Wang, Ping-Hsiu Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie Liu, Tianming Yang
{"title":"揭秘大规模照片存储的缓存策略:以腾讯为例","authors":"Ke Zhou, Si Sun, Hua Wang, Ping-Hsiu Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie Liu, Tianming Yang","doi":"10.1145/3205289.3205299","DOIUrl":null,"url":null,"abstract":"Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the behind reasons for that phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. Evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4%, while reducing the average access latency by 6.9% at a marginal cost of 4.14% backend network traffic compared to the original system that performs no prefetching.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Demystifying Cache Policies for Photo Stores at Scale: A Tencent Case Study\",\"authors\":\"Ke Zhou, Si Sun, Hua Wang, Ping-Hsiu Huang, Xubin He, Rui Lan, Wenyan Li, Wenjie Liu, Tianming Yang\",\"doi\":\"10.1145/3205289.3205299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the behind reasons for that phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. Evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4%, while reducing the average access latency by 6.9% at a marginal cost of 4.14% backend network traffic compared to the original system that performs no prefetching.\",\"PeriodicalId\":441217,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3205289.3205299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demystifying Cache Policies for Photo Stores at Scale: A Tencent Case Study
Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the behind reasons for that phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. Evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4%, while reducing the average access latency by 6.9% at a marginal cost of 4.14% backend network traffic compared to the original system that performs no prefetching.