为AFLR项目的罗马尼亚语结果生成大型语音数据库的基于规则的方法

S. Diaconescu, Monica-Mihaela Rizea, M. Ionescu, A. Minca, Monica Radulescu
{"title":"为AFLR项目的罗马尼亚语结果生成大型语音数据库的基于规则的方法","authors":"S. Diaconescu, Monica-Mihaela Rizea, M. Ionescu, A. Minca, Monica Radulescu","doi":"10.1109/SPED.2017.7990439","DOIUrl":null,"url":null,"abstract":"This paper presents a rule-based approach for generating a large phonetic database for Romanian. The knowledge base is developed by means of the GRAALAN (Grammar Abstract Language) system. By inspecting dictionaries and corpora, we generate a phonetic database over 100,000 lemmas. Our database has a high degree of accuracy ensured by our rule-based method applied for generating phonetic transcriptions.","PeriodicalId":345314,"journal":{"name":"2017 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rule-based approach to generating large phonetic databases for Romanian results of the AFLR project\",\"authors\":\"S. Diaconescu, Monica-Mihaela Rizea, M. Ionescu, A. Minca, Monica Radulescu\",\"doi\":\"10.1109/SPED.2017.7990439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a rule-based approach for generating a large phonetic database for Romanian. The knowledge base is developed by means of the GRAALAN (Grammar Abstract Language) system. By inspecting dictionaries and corpora, we generate a phonetic database over 100,000 lemmas. Our database has a high degree of accuracy ensured by our rule-based method applied for generating phonetic transcriptions.\",\"PeriodicalId\":345314,\"journal\":{\"name\":\"2017 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPED.2017.7990439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPED.2017.7990439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于规则的方法来生成一个大型罗马尼亚语语音数据库。该知识库采用GRAALAN(语法抽象语言)系统开发。通过检查字典和语料库,我们生成了一个超过10万个引词的语音数据库。我们的数据库具有高度的准确性,我们的基于规则的方法用于生成语音转录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rule-based approach to generating large phonetic databases for Romanian results of the AFLR project
This paper presents a rule-based approach for generating a large phonetic database for Romanian. The knowledge base is developed by means of the GRAALAN (Grammar Abstract Language) system. By inspecting dictionaries and corpora, we generate a phonetic database over 100,000 lemmas. Our database has a high degree of accuracy ensured by our rule-based method applied for generating phonetic transcriptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信