预测商品市场波动:HAR还是粗糙?

Mesias Alfeus, Christina Sklibosios Nikitopoulos
{"title":"预测商品市场波动:HAR还是粗糙?","authors":"Mesias Alfeus, Christina Sklibosios Nikitopoulos","doi":"10.2139/ssrn.3520500","DOIUrl":null,"url":null,"abstract":"Commodity is one of the most volatile markets and forecasting its volatility is an issue of paramount importance. We study the dynamics of the commodity markets volatility by employing fractional stochastic volatility and heterogeneous autoregressive (HAR) models. Based on a high-frequency futures price dataset of 22 commodities, we confirm that the volatility of commodity markets is rough and volatility components over different horizons are economically and statistically significant. Long memory with anti-persistence is evident across all commodities, with weekly volatility dominating in most commodity markets and daily volatility for oil and gold markets. HAR models display a clear advantage in forecasting performance compared to fractional volatility models.","PeriodicalId":388404,"journal":{"name":"ERN: Other Econometric Modeling: Commodity Markets (Topic)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Forecasting Commodity Markets Volatility: HAR or Rough?\",\"authors\":\"Mesias Alfeus, Christina Sklibosios Nikitopoulos\",\"doi\":\"10.2139/ssrn.3520500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commodity is one of the most volatile markets and forecasting its volatility is an issue of paramount importance. We study the dynamics of the commodity markets volatility by employing fractional stochastic volatility and heterogeneous autoregressive (HAR) models. Based on a high-frequency futures price dataset of 22 commodities, we confirm that the volatility of commodity markets is rough and volatility components over different horizons are economically and statistically significant. Long memory with anti-persistence is evident across all commodities, with weekly volatility dominating in most commodity markets and daily volatility for oil and gold markets. HAR models display a clear advantage in forecasting performance compared to fractional volatility models.\",\"PeriodicalId\":388404,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Commodity Markets (Topic)\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Commodity Markets (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3520500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Commodity Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3520500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

大宗商品是最不稳定的市场之一,预测其波动性是一个至关重要的问题。本文采用分数随机波动和异质自回归(HAR)模型研究了商品市场波动的动力学。基于22种商品的高频期货价格数据集,我们证实了商品市场的波动性是粗糙的,不同视界上的波动性成分在经济和统计上都是显著的。在所有大宗商品中,具有反持续性的长期记忆都很明显,大多数大宗商品市场的周波动占主导地位,石油和黄金市场的日波动占主导地位。与分数波动率模型相比,HAR模型在预测性能方面显示出明显的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting Commodity Markets Volatility: HAR or Rough?
Commodity is one of the most volatile markets and forecasting its volatility is an issue of paramount importance. We study the dynamics of the commodity markets volatility by employing fractional stochastic volatility and heterogeneous autoregressive (HAR) models. Based on a high-frequency futures price dataset of 22 commodities, we confirm that the volatility of commodity markets is rough and volatility components over different horizons are economically and statistically significant. Long memory with anti-persistence is evident across all commodities, with weekly volatility dominating in most commodity markets and daily volatility for oil and gold markets. HAR models display a clear advantage in forecasting performance compared to fractional volatility models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信