分布式三角形计数在Graphulo矩阵数学库

D. Hutchison
{"title":"分布式三角形计数在Graphulo矩阵数学库","authors":"D. Hutchison","doi":"10.1109/HPEC.2017.8091041","DOIUrl":null,"url":null,"abstract":"Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for serverside processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Distributed triangle counting in the Graphulo matrix math library\",\"authors\":\"D. Hutchison\",\"doi\":\"10.1109/HPEC.2017.8091041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for serverside processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.\",\"PeriodicalId\":364903,\"journal\":{\"name\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2017.8091041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

三角形计数是大图分析的关键算法。Graphulo库为在Apache Accumulo分布式数据库上实现图形算法提供了一个框架。在这项工作中,我们采用了两种计算三角形的算法,一种使用邻接矩阵,另一种也使用关联矩阵,用于Graphulo库中的服务器端处理。基于云计算的实验显示,这些不同的方法在幂律Graph500图族上的性能表现相似,其中数据倾斜越来越成为瓶颈。这些结果激发了我们为未来工作提出的倾斜感知混合算法的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed triangle counting in the Graphulo matrix math library
Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for serverside processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信