{"title":"基于组合算法的精确逻辑最小化新算法","authors":"Yu Qingjian, Xu Ge, Zhao Jianshen","doi":"10.1109/CICCAS.1991.184520","DOIUrl":null,"url":null,"abstract":"The authors provide a new combinational algorithm for the sharp-product (SP) operation. For the SP of a cube w.r.t. a set of cubes, they introduce a row incidence matrix such that each prime cube of the SP corresponds to a minimal cover of the maximal effective column combinations of the matrix. Using this result, a new efficient exact logic minimization algorithm for multiple-values functions is given.<<ETX>>","PeriodicalId":119051,"journal":{"name":"China., 1991 International Conference on Circuits and Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new exact logic minimization algorithm based on a combinational algorithm for sharp-products\",\"authors\":\"Yu Qingjian, Xu Ge, Zhao Jianshen\",\"doi\":\"10.1109/CICCAS.1991.184520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors provide a new combinational algorithm for the sharp-product (SP) operation. For the SP of a cube w.r.t. a set of cubes, they introduce a row incidence matrix such that each prime cube of the SP corresponds to a minimal cover of the maximal effective column combinations of the matrix. Using this result, a new efficient exact logic minimization algorithm for multiple-values functions is given.<<ETX>>\",\"PeriodicalId\":119051,\"journal\":{\"name\":\"China., 1991 International Conference on Circuits and Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China., 1991 International Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICCAS.1991.184520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China., 1991 International Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICCAS.1991.184520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new exact logic minimization algorithm based on a combinational algorithm for sharp-products
The authors provide a new combinational algorithm for the sharp-product (SP) operation. For the SP of a cube w.r.t. a set of cubes, they introduce a row incidence matrix such that each prime cube of the SP corresponds to a minimal cover of the maximal effective column combinations of the matrix. Using this result, a new efficient exact logic minimization algorithm for multiple-values functions is given.<>