语音文档检索的神经关联感知查询建模

Tien-Hong Lo, Ying-Wen Chen, Kuan-Yu Chen, H. Wang, Berlin Chen
{"title":"语音文档检索的神经关联感知查询建模","authors":"Tien-Hong Lo, Ying-Wen Chen, Kuan-Yu Chen, H. Wang, Berlin Chen","doi":"10.1109/ASRU.2017.8268973","DOIUrl":null,"url":null,"abstract":"Spoken document retrieval (SDR) is becoming a much-needed application due to that unprecedented volumes of audio-visual media have been made available in our daily life. As far as we are aware, most of the wide variety of SDR methods mainly focus on exploring robust indexing and effective retrieval methods to quantify the relevance degree between a pair of query and document. However, similar to information retrieval (IR), a fundamental challenge facing SDR is that a query is usually too short to convey a user's information need, such that a retrieval system cannot always achieve prospective efficacy when with the existing retrieval methods. In order to further boost retrieval performance, several studies turn their attention to reformulating the original query by leveraging an online pseudo-relevance feedback (PRF) process, which often comes at the price of taking significant time. Motivated by these observations, this paper presents a novel extension of the general line of SDR research and its contribution is at least two-fold. First, building on neural network-based techniques, we put forward a neural relevance-aware query modeling (NRM) framework, which is designed to not only infer a discriminative query language model automatically for a given query, but also get around the time-consuming PRF process. Second, the utility of the methods instantiated from our proposed framework and several widely-used retrieval methods are extensively analyzed and compared on a standard SDR task, which suggests the superiority of our methods.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural relevance-aware query modeling for spoken document retrieval\",\"authors\":\"Tien-Hong Lo, Ying-Wen Chen, Kuan-Yu Chen, H. Wang, Berlin Chen\",\"doi\":\"10.1109/ASRU.2017.8268973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken document retrieval (SDR) is becoming a much-needed application due to that unprecedented volumes of audio-visual media have been made available in our daily life. As far as we are aware, most of the wide variety of SDR methods mainly focus on exploring robust indexing and effective retrieval methods to quantify the relevance degree between a pair of query and document. However, similar to information retrieval (IR), a fundamental challenge facing SDR is that a query is usually too short to convey a user's information need, such that a retrieval system cannot always achieve prospective efficacy when with the existing retrieval methods. In order to further boost retrieval performance, several studies turn their attention to reformulating the original query by leveraging an online pseudo-relevance feedback (PRF) process, which often comes at the price of taking significant time. Motivated by these observations, this paper presents a novel extension of the general line of SDR research and its contribution is at least two-fold. First, building on neural network-based techniques, we put forward a neural relevance-aware query modeling (NRM) framework, which is designed to not only infer a discriminative query language model automatically for a given query, but also get around the time-consuming PRF process. Second, the utility of the methods instantiated from our proposed framework and several widely-used retrieval methods are extensively analyzed and compared on a standard SDR task, which suggests the superiority of our methods.\",\"PeriodicalId\":290868,\"journal\":{\"name\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2017.8268973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着视听媒体的大量涌现,语音文件检索(SDR)已成为我们日常生活中急需的一种应用。据我们所知,目前各种各样的SDR方法主要集中在探索鲁棒索引和有效检索方法,以量化查询对与文档之间的关联程度。然而,与信息检索(IR)类似,SDR面临的一个根本挑战是查询通常太短,无法传达用户的信息需求,使得检索系统在使用现有的检索方法时不能总是达到预期的效果。为了进一步提高检索性能,一些研究将注意力转向利用在线伪相关反馈(PRF)过程来重新表述原始查询,这通常是以花费大量时间为代价的。在这些观察结果的推动下,本文提出了SDR研究总路线的新扩展,其贡献至少是双重的。首先,在基于神经网络技术的基础上,提出了一种神经关联感知查询建模(NRM)框架,该框架不仅可以针对给定的查询自动推断出判别查询语言模型,而且可以绕过耗时的PRF过程。其次,在一个标准的SDR任务中,对我们提出的框架实例化方法和几种广泛使用的检索方法的实用性进行了广泛的分析和比较,这表明了我们的方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural relevance-aware query modeling for spoken document retrieval
Spoken document retrieval (SDR) is becoming a much-needed application due to that unprecedented volumes of audio-visual media have been made available in our daily life. As far as we are aware, most of the wide variety of SDR methods mainly focus on exploring robust indexing and effective retrieval methods to quantify the relevance degree between a pair of query and document. However, similar to information retrieval (IR), a fundamental challenge facing SDR is that a query is usually too short to convey a user's information need, such that a retrieval system cannot always achieve prospective efficacy when with the existing retrieval methods. In order to further boost retrieval performance, several studies turn their attention to reformulating the original query by leveraging an online pseudo-relevance feedback (PRF) process, which often comes at the price of taking significant time. Motivated by these observations, this paper presents a novel extension of the general line of SDR research and its contribution is at least two-fold. First, building on neural network-based techniques, we put forward a neural relevance-aware query modeling (NRM) framework, which is designed to not only infer a discriminative query language model automatically for a given query, but also get around the time-consuming PRF process. Second, the utility of the methods instantiated from our proposed framework and several widely-used retrieval methods are extensively analyzed and compared on a standard SDR task, which suggests the superiority of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信