高带宽无源雷达系统中数据丢失的特性与校正

L. Vertatschitsch, Weiwei Sun, J. Sahr
{"title":"高带宽无源雷达系统中数据丢失的特性与校正","authors":"L. Vertatschitsch, Weiwei Sun, J. Sahr","doi":"10.1109/RADAR.2014.6875629","DOIUrl":null,"url":null,"abstract":"Passive radar receivers use transmitters of opportunity such as digital television (DTV) broadcast to detect targets. The next generation Manastash Ridge Radar (MRR) is designed without the use of an analog downconverter to observe transmitters up to 1.5 GHz. In addition to fast sampling, the receiver is built around a Xilinx Virtex-5 field programmable gate array (FPGA) for software-defined, flexible, and real-time, low latency processing. The FPGA channelizes data from up to four antennas and streams 8-bit IQ data through a 10 GbE link to a data recorder. Challenging the capacity of this link is extremely desirable, as it will allow the user to save a wide RF spectrum to disk for experimental processing. In the fastest use of this link, we observe up to 10 frequency-adjacent DTV stations simultaneously, however packet loss occurs. We present here characterization of this loss in real data, simulations of how this loss propagates through the processing chain and affects the final data product, suggestions for correcting this loss, and apply these strategies to real detections of aircraft on each of four antennas. The results of the simulations suggest that the radar system can absorb even 50% data loss while losing only 3 dB in detectability of targets and completely recover accurate range and Doppler velocity estimates. The detection of an aircraft with our system in the presence of 12% data loss follows the trends observed in simulation. This encouraging result shows that systems with high processing gain are incredibly robust to noise and the sacrifice of lost data in the face of observing more RF spectrum (more transmitters) is truly not a sacrifice at all.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization and correction of data loss in a high bandwidth passive radar system\",\"authors\":\"L. Vertatschitsch, Weiwei Sun, J. Sahr\",\"doi\":\"10.1109/RADAR.2014.6875629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive radar receivers use transmitters of opportunity such as digital television (DTV) broadcast to detect targets. The next generation Manastash Ridge Radar (MRR) is designed without the use of an analog downconverter to observe transmitters up to 1.5 GHz. In addition to fast sampling, the receiver is built around a Xilinx Virtex-5 field programmable gate array (FPGA) for software-defined, flexible, and real-time, low latency processing. The FPGA channelizes data from up to four antennas and streams 8-bit IQ data through a 10 GbE link to a data recorder. Challenging the capacity of this link is extremely desirable, as it will allow the user to save a wide RF spectrum to disk for experimental processing. In the fastest use of this link, we observe up to 10 frequency-adjacent DTV stations simultaneously, however packet loss occurs. We present here characterization of this loss in real data, simulations of how this loss propagates through the processing chain and affects the final data product, suggestions for correcting this loss, and apply these strategies to real detections of aircraft on each of four antennas. The results of the simulations suggest that the radar system can absorb even 50% data loss while losing only 3 dB in detectability of targets and completely recover accurate range and Doppler velocity estimates. The detection of an aircraft with our system in the presence of 12% data loss follows the trends observed in simulation. This encouraging result shows that systems with high processing gain are incredibly robust to noise and the sacrifice of lost data in the face of observing more RF spectrum (more transmitters) is truly not a sacrifice at all.\",\"PeriodicalId\":127690,\"journal\":{\"name\":\"2014 IEEE Radar Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.6875629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无源雷达接收机利用诸如数字电视(DTV)广播的机会发射器来探测目标。下一代马纳斯塔什岭雷达(MRR)设计不使用模拟下变频器来观察高达1.5 GHz的发射机。除了快速采样外,接收器还围绕Xilinx Virtex-5现场可编程门阵列(FPGA)构建,用于软件定义,灵活,实时,低延迟的处理。FPGA将来自多达四个天线的数据信道化,并通过10gbe链路将8位IQ数据流到数据记录器。挑战该链路的容量是非常可取的,因为它将允许用户将广泛的RF频谱保存到磁盘以进行实验处理。在此链路的最快使用中,我们观察到多达10个频率相邻的数字电视台同时存在,但是会发生丢包。我们在这里介绍了真实数据中这种损失的特征,模拟了这种损失如何通过处理链传播并影响最终数据产品,提出了纠正这种损失的建议,并将这些策略应用于四个天线中的每个天线上的飞机的真实检测。仿真结果表明,该雷达系统可以吸收50%的数据损失,而对目标的可探测性仅损失3db,并完全恢复准确的距离和多普勒速度估计。在数据丢失12%的情况下,我们的系统对飞机的检测遵循了模拟中观察到的趋势。这个令人鼓舞的结果表明,具有高处理增益的系统对噪声具有令人难以置信的鲁棒性,并且面对观察更多RF频谱(更多发射机)而牺牲丢失的数据实际上根本不是牺牲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and correction of data loss in a high bandwidth passive radar system
Passive radar receivers use transmitters of opportunity such as digital television (DTV) broadcast to detect targets. The next generation Manastash Ridge Radar (MRR) is designed without the use of an analog downconverter to observe transmitters up to 1.5 GHz. In addition to fast sampling, the receiver is built around a Xilinx Virtex-5 field programmable gate array (FPGA) for software-defined, flexible, and real-time, low latency processing. The FPGA channelizes data from up to four antennas and streams 8-bit IQ data through a 10 GbE link to a data recorder. Challenging the capacity of this link is extremely desirable, as it will allow the user to save a wide RF spectrum to disk for experimental processing. In the fastest use of this link, we observe up to 10 frequency-adjacent DTV stations simultaneously, however packet loss occurs. We present here characterization of this loss in real data, simulations of how this loss propagates through the processing chain and affects the final data product, suggestions for correcting this loss, and apply these strategies to real detections of aircraft on each of four antennas. The results of the simulations suggest that the radar system can absorb even 50% data loss while losing only 3 dB in detectability of targets and completely recover accurate range and Doppler velocity estimates. The detection of an aircraft with our system in the presence of 12% data loss follows the trends observed in simulation. This encouraging result shows that systems with high processing gain are incredibly robust to noise and the sacrifice of lost data in the face of observing more RF spectrum (more transmitters) is truly not a sacrifice at all.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信