两个bin分区问题的一种启发式算法

A. Asadullah, K. Dinesha, P. Bhatt
{"title":"两个bin分区问题的一种启发式算法","authors":"A. Asadullah, K. Dinesha, P. Bhatt","doi":"10.1109/IC3.2014.6897152","DOIUrl":null,"url":null,"abstract":"There are many heuristics to address 2-bin integer partition problem. The range (R) of the values in the data set and the number of element (N) in the data set are 2-parameters which determine the appropriate heuristics. By and large, for large N, Karmarkar-Karp(KK) heuristics offers solutions. For low values of N, Complete Karmarkar-Karp heuristics (CKK), Horowitz and Sahni (HS), Schroeppel and Shamir (SS), Brute-Force search (BF) offers solutions. However, our computations indicate that for R > 1012 and for a specific range of N, depending on R, (R = 1014, N = 60 to 150) the best existing heuristics (CKK) takes long or very long CPU time. We are proposing a different heuristic to address this scenario. The proposed heuristic in the paper uses depth-first (like KK) set differencing till N become 48 and from N = 48 to 1 it performs exhaustive search (like HS). For the above mentioned scenario, we found that this combination of strategies gives better and faster solution compared to CKK.","PeriodicalId":444918,"journal":{"name":"2014 Seventh International Conference on Contemporary Computing (IC3)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A heuristic for two bin partition problem\",\"authors\":\"A. Asadullah, K. Dinesha, P. Bhatt\",\"doi\":\"10.1109/IC3.2014.6897152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many heuristics to address 2-bin integer partition problem. The range (R) of the values in the data set and the number of element (N) in the data set are 2-parameters which determine the appropriate heuristics. By and large, for large N, Karmarkar-Karp(KK) heuristics offers solutions. For low values of N, Complete Karmarkar-Karp heuristics (CKK), Horowitz and Sahni (HS), Schroeppel and Shamir (SS), Brute-Force search (BF) offers solutions. However, our computations indicate that for R > 1012 and for a specific range of N, depending on R, (R = 1014, N = 60 to 150) the best existing heuristics (CKK) takes long or very long CPU time. We are proposing a different heuristic to address this scenario. The proposed heuristic in the paper uses depth-first (like KK) set differencing till N become 48 and from N = 48 to 1 it performs exhaustive search (like HS). For the above mentioned scenario, we found that this combination of strategies gives better and faster solution compared to CKK.\",\"PeriodicalId\":444918,\"journal\":{\"name\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Seventh International Conference on Contemporary Computing (IC3)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3.2014.6897152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2014.6897152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有许多启发式方法来解决2-bin整数分区问题。数据集中值的范围(R)和数据集中元素的数量(N)是两个参数,它们决定了适当的启发式。总的来说,对于较大的N,卡马卡-卡普(KK)启发式提供了解决方案。对于低N值,完全Karmarkar-Karp启发式(CKK), Horowitz and Sahni (HS), Schroeppel and Shamir (SS), Brute-Force search (BF)提供了解决方案。然而,我们的计算表明,对于R bb0 1012和特定的N范围,取决于R, (R = 1014, N = 60到150),现有的最佳启发式(CKK)需要很长或很长的CPU时间。我们提出了一种不同的启发式方法来解决这种情况。本文提出的启发式算法使用深度优先(如KK)集差分直到N变为48,并从N = 48到1执行穷举搜索(如HS)。对于上述场景,我们发现与CKK相比,这种策略组合提供了更好更快的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A heuristic for two bin partition problem
There are many heuristics to address 2-bin integer partition problem. The range (R) of the values in the data set and the number of element (N) in the data set are 2-parameters which determine the appropriate heuristics. By and large, for large N, Karmarkar-Karp(KK) heuristics offers solutions. For low values of N, Complete Karmarkar-Karp heuristics (CKK), Horowitz and Sahni (HS), Schroeppel and Shamir (SS), Brute-Force search (BF) offers solutions. However, our computations indicate that for R > 1012 and for a specific range of N, depending on R, (R = 1014, N = 60 to 150) the best existing heuristics (CKK) takes long or very long CPU time. We are proposing a different heuristic to address this scenario. The proposed heuristic in the paper uses depth-first (like KK) set differencing till N become 48 and from N = 48 to 1 it performs exhaustive search (like HS). For the above mentioned scenario, we found that this combination of strategies gives better and faster solution compared to CKK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信