Zhuolun He, Ziyi Wang, Chen Bail, Haoyu Yang, Bei Yu
{"title":"基于图学习的算法块识别","authors":"Zhuolun He, Ziyi Wang, Chen Bail, Haoyu Yang, Bei Yu","doi":"10.1109/ICCAD51958.2021.9643581","DOIUrl":null,"url":null,"abstract":"Arithmetic block identification in gate-level netlist is an essential procedure for malicious logic detection, functional verification, or macro-block optimization. We argue that existing methods suffer either scalability or performance issues. To address the problem, we propose a graph learning-based solution that promises to extract desired logic components from a complete design netlist. We further design a novel asynchronous bidirectional graph neural network (ABGNN) dedicated to representation learning on directed acyclic graphs. Experimental results on open-source RISC-V CPU designs demonstrate that our proposed solution significantly outperforms several state-of-the-art arithmetic block identification flows.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Graph Learning-Based Arithmetic Block Identification\",\"authors\":\"Zhuolun He, Ziyi Wang, Chen Bail, Haoyu Yang, Bei Yu\",\"doi\":\"10.1109/ICCAD51958.2021.9643581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arithmetic block identification in gate-level netlist is an essential procedure for malicious logic detection, functional verification, or macro-block optimization. We argue that existing methods suffer either scalability or performance issues. To address the problem, we propose a graph learning-based solution that promises to extract desired logic components from a complete design netlist. We further design a novel asynchronous bidirectional graph neural network (ABGNN) dedicated to representation learning on directed acyclic graphs. Experimental results on open-source RISC-V CPU designs demonstrate that our proposed solution significantly outperforms several state-of-the-art arithmetic block identification flows.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arithmetic block identification in gate-level netlist is an essential procedure for malicious logic detection, functional verification, or macro-block optimization. We argue that existing methods suffer either scalability or performance issues. To address the problem, we propose a graph learning-based solution that promises to extract desired logic components from a complete design netlist. We further design a novel asynchronous bidirectional graph neural network (ABGNN) dedicated to representation learning on directed acyclic graphs. Experimental results on open-source RISC-V CPU designs demonstrate that our proposed solution significantly outperforms several state-of-the-art arithmetic block identification flows.