参数化线性系统的有界误差流管计算

Ratan Lal, P. Prabhakar
{"title":"参数化线性系统的有界误差流管计算","authors":"Ratan Lal, P. Prabhakar","doi":"10.1109/EMSOFT.2015.7318279","DOIUrl":null,"url":null,"abstract":"We consider the problem of computing a bounded error approximation of the solution over a bounded time [0,T], of a parameterized linear system, x(t) = Ax(t), where A is constrained by a compact polyhedron Ω. Our method consists of sampling the time domain [0,T] as well as the parameter space Ω and constructing a continuous piecewise bilinear function which interpolates the solution of the parameterized system at these sample points. More precisely, given an ε > 0, we compute a sampling interval δ > 0, such that the piecewise bilinear function obtained from the sample points is within ε of the original trajectory. We present experimental results which suggest that our method is scalable.","PeriodicalId":297297,"journal":{"name":"2015 International Conference on Embedded Software (EMSOFT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Bounded error flowpipe computation of parameterized linear systems\",\"authors\":\"Ratan Lal, P. Prabhakar\",\"doi\":\"10.1109/EMSOFT.2015.7318279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of computing a bounded error approximation of the solution over a bounded time [0,T], of a parameterized linear system, x(t) = Ax(t), where A is constrained by a compact polyhedron Ω. Our method consists of sampling the time domain [0,T] as well as the parameter space Ω and constructing a continuous piecewise bilinear function which interpolates the solution of the parameterized system at these sample points. More precisely, given an ε > 0, we compute a sampling interval δ > 0, such that the piecewise bilinear function obtained from the sample points is within ε of the original trajectory. We present experimental results which suggest that our method is scalable.\",\"PeriodicalId\":297297,\"journal\":{\"name\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Software (EMSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMSOFT.2015.7318279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2015.7318279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

考虑一个参数化线性系统x(T) = Ax(T)在有界时间[0,T]上解的有界误差逼近问题,其中a受紧多面体Ω约束。我们的方法包括对时域[0,T]和参数空间Ω进行采样,并构造一个连续的分段双线性函数,该函数在这些采样点上插值参数化系统的解。更精确地说,当ε > 0时,我们计算一个δ > 0的采样区间,使得从采样点得到的分段双线性函数在原始轨迹的ε范围内。我们的实验结果表明,我们的方法是可扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounded error flowpipe computation of parameterized linear systems
We consider the problem of computing a bounded error approximation of the solution over a bounded time [0,T], of a parameterized linear system, x(t) = Ax(t), where A is constrained by a compact polyhedron Ω. Our method consists of sampling the time domain [0,T] as well as the parameter space Ω and constructing a continuous piecewise bilinear function which interpolates the solution of the parameterized system at these sample points. More precisely, given an ε > 0, we compute a sampling interval δ > 0, such that the piecewise bilinear function obtained from the sample points is within ε of the original trajectory. We present experimental results which suggest that our method is scalable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信