高分辨率汽车雷达点云成像与处理

Meng Jiang, Gang Xu, Haonan Pei, Hui Zhang, Kunpeng Guo
{"title":"高分辨率汽车雷达点云成像与处理","authors":"Meng Jiang, Gang Xu, Haonan Pei, Hui Zhang, Kunpeng Guo","doi":"10.1109/piers55526.2022.9792662","DOIUrl":null,"url":null,"abstract":"Automotive radar is a class of important and necessary sensor for Advanced Driver Assistance System (ADAS) due to its recognized advantages of small size, low hardware cost, all-weather working, high-resolution and etc. However, the limitation of low angular resolution with low imaging performance can hardly satisfy the need of next-stage ADAS. The emerging 4D imaging radar (4D-radar), adopting the multi-chip cascaded multiple-input multiple-output (MIMO) technology, can achieve high resolution in the azimuth and elevation dimensions with providing high-quality three-dimensional point clouds images. In this paper, a novel algorithm is proposed by integrating the high-resolution MIMO radar point clouds imaging and processing. First, we have symmetrically studied the MIMO radar technologies, classing into three main modes, TDM-MIMO, Phase coding MIMO, DDM-MIMO. In particular, we have designed a mixed TDM-DDM-MIMO framework for point clouds imaging. Finally, the experimental analysis of the simulation is provided to confirm the effectiveness of the proposal.","PeriodicalId":422383,"journal":{"name":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-resolution Automotive Radar Point Cloud Imaging and Processing\",\"authors\":\"Meng Jiang, Gang Xu, Haonan Pei, Hui Zhang, Kunpeng Guo\",\"doi\":\"10.1109/piers55526.2022.9792662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive radar is a class of important and necessary sensor for Advanced Driver Assistance System (ADAS) due to its recognized advantages of small size, low hardware cost, all-weather working, high-resolution and etc. However, the limitation of low angular resolution with low imaging performance can hardly satisfy the need of next-stage ADAS. The emerging 4D imaging radar (4D-radar), adopting the multi-chip cascaded multiple-input multiple-output (MIMO) technology, can achieve high resolution in the azimuth and elevation dimensions with providing high-quality three-dimensional point clouds images. In this paper, a novel algorithm is proposed by integrating the high-resolution MIMO radar point clouds imaging and processing. First, we have symmetrically studied the MIMO radar technologies, classing into three main modes, TDM-MIMO, Phase coding MIMO, DDM-MIMO. In particular, we have designed a mixed TDM-DDM-MIMO framework for point clouds imaging. Finally, the experimental analysis of the simulation is provided to confirm the effectiveness of the proposal.\",\"PeriodicalId\":422383,\"journal\":{\"name\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Photonics & Electromagnetics Research Symposium (PIERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/piers55526.2022.9792662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Photonics & Electromagnetics Research Symposium (PIERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/piers55526.2022.9792662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

汽车雷达具有体积小、硬件成本低、全天候工作、高分辨率等公认的优点,是高级驾驶辅助系统(ADAS)必不可少的一类重要传感器。然而,低角度分辨率和低成像性能的限制很难满足下一阶段ADAS的需要。新兴的四维成像雷达(4D-radar)采用多芯片级联多输入多输出(MIMO)技术,可以在方位角和仰角尺寸上实现高分辨率,提供高质量的三维点云图像。本文提出了一种集成高分辨率MIMO雷达点云成像与处理的新算法。首先,我们对称地研究了MIMO雷达技术,将其分为三种主要模式:TDM-MIMO,相位编码MIMO, DDM-MIMO。特别地,我们设计了一个用于点云成像的混合TDM-DDM-MIMO框架。最后进行了仿真实验分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution Automotive Radar Point Cloud Imaging and Processing
Automotive radar is a class of important and necessary sensor for Advanced Driver Assistance System (ADAS) due to its recognized advantages of small size, low hardware cost, all-weather working, high-resolution and etc. However, the limitation of low angular resolution with low imaging performance can hardly satisfy the need of next-stage ADAS. The emerging 4D imaging radar (4D-radar), adopting the multi-chip cascaded multiple-input multiple-output (MIMO) technology, can achieve high resolution in the azimuth and elevation dimensions with providing high-quality three-dimensional point clouds images. In this paper, a novel algorithm is proposed by integrating the high-resolution MIMO radar point clouds imaging and processing. First, we have symmetrically studied the MIMO radar technologies, classing into three main modes, TDM-MIMO, Phase coding MIMO, DDM-MIMO. In particular, we have designed a mixed TDM-DDM-MIMO framework for point clouds imaging. Finally, the experimental analysis of the simulation is provided to confirm the effectiveness of the proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信