用典型相关分析检测非平稳过程的多锥度检验

F. A. Marshall, G. Takahara, D. Thomson
{"title":"用典型相关分析检测非平稳过程的多锥度检验","authors":"F. A. Marshall, G. Takahara, D. Thomson","doi":"10.1109/SSP.2018.8450806","DOIUrl":null,"url":null,"abstract":"A new test has been designed for detecting the presence of non-stationary component processes in a time series. The test statistic is derived from the canonical correlations between two sets of eigencoefficients which are offset in frequency. The correlation coefficient which defines the test statistic has lower estimation variance than the multitaper, linear spectral-correlation coefficient, and it reveals important evidence of non-stationarity which is missed in the detector of the latter correlation coefficient.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Multitaper Test For The Detection of Non-Stationary Processes Using Canonical Correlation Analysis\",\"authors\":\"F. A. Marshall, G. Takahara, D. Thomson\",\"doi\":\"10.1109/SSP.2018.8450806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new test has been designed for detecting the presence of non-stationary component processes in a time series. The test statistic is derived from the canonical correlations between two sets of eigencoefficients which are offset in frequency. The correlation coefficient which defines the test statistic has lower estimation variance than the multitaper, linear spectral-correlation coefficient, and it reveals important evidence of non-stationarity which is missed in the detector of the latter correlation coefficient.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设计了一种新的检测方法,用于检测时间序列中非平稳分量过程的存在。检验统计量是由两组在频率上偏移的特征系数之间的典型相关推导出来的。定义检验统计量的相关系数比多锥度线性光谱相关系数具有更小的估计方差,它揭示了非平稳性的重要证据,而后者在相关系数的检测中被忽略了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multitaper Test For The Detection of Non-Stationary Processes Using Canonical Correlation Analysis
A new test has been designed for detecting the presence of non-stationary component processes in a time series. The test statistic is derived from the canonical correlations between two sets of eigencoefficients which are offset in frequency. The correlation coefficient which defines the test statistic has lower estimation variance than the multitaper, linear spectral-correlation coefficient, and it reveals important evidence of non-stationarity which is missed in the detector of the latter correlation coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信