三维接触流形的高收缩不等式

Alberto Abbondandolo, Christian Lange, M. Mazzucchelli
{"title":"三维接触流形的高收缩不等式","authors":"Alberto Abbondandolo, Christian Lange, M. Mazzucchelli","doi":"10.5802/jep.195","DOIUrl":null,"url":null,"abstract":"A contact form is called Besse when the associated Reeb flow is periodic. We prove that Besse contact forms on closed connected 3-manifolds are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Higher systolic inequalities for 3-dimensional contact manifolds\",\"authors\":\"Alberto Abbondandolo, Christian Lange, M. Mazzucchelli\",\"doi\":\"10.5802/jep.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A contact form is called Besse when the associated Reeb flow is periodic. We prove that Besse contact forms on closed connected 3-manifolds are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

当关联的Reeb流是周期性的时,联系表单称为Besse。证明了闭连通3流形上的贝塞接触形式是具有合适的高收缩比的局部最优形式。我们的结果扩展了之前针对Zoll接触表单的结果,也就是说,接触表单的Reeb流定义了一个自由圆动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher systolic inequalities for 3-dimensional contact manifolds
A contact form is called Besse when the associated Reeb flow is periodic. We prove that Besse contact forms on closed connected 3-manifolds are the local maximizers of suitable higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact forms whose Reeb flow defines a free circle action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信