基于El Niño南方涛动指数的水库数据驱动控制

M. Giuliani, A. Castelletti
{"title":"基于El Niño南方涛动指数的水库数据驱动控制","authors":"M. Giuliani, A. Castelletti","doi":"10.1109/EEEIC.2019.8783785","DOIUrl":null,"url":null,"abstract":"Advanced modeling and control contribute to the design of efficient and sustainable water management strategies, which are challenged by the increasing frequency and intensity of extreme events often associated with large-scale climate signals, such as El Niño Southern Oscillation (ENSO). Despite ENSO-related information provides a great opportunity to make the operations of water systems more flexible and adaptive, incorporating it into an operating policy still represents a major challenge for optimal control algorithms. In this work, we contribute a framework combining Input Variable Selection techniques for ENSO detection with a data-driven control strategy to use this information for improving the system operations. Our framework is demonstrated on the control of the multipurpose Hoa Binh reservoir (Vietnam), showing that ENSO teleconnection represents a valuable information for addressing the performance tradeoffs between energy production, water supply, and flood protection.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data-driven control of water reservoirs using El Niño Southern Oscillation indexes\",\"authors\":\"M. Giuliani, A. Castelletti\",\"doi\":\"10.1109/EEEIC.2019.8783785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced modeling and control contribute to the design of efficient and sustainable water management strategies, which are challenged by the increasing frequency and intensity of extreme events often associated with large-scale climate signals, such as El Niño Southern Oscillation (ENSO). Despite ENSO-related information provides a great opportunity to make the operations of water systems more flexible and adaptive, incorporating it into an operating policy still represents a major challenge for optimal control algorithms. In this work, we contribute a framework combining Input Variable Selection techniques for ENSO detection with a data-driven control strategy to use this information for improving the system operations. Our framework is demonstrated on the control of the multipurpose Hoa Binh reservoir (Vietnam), showing that ENSO teleconnection represents a valuable information for addressing the performance tradeoffs between energy production, water supply, and flood protection.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

先进的建模和控制有助于设计高效和可持续的水管理策略,这些策略面临着极端事件频率和强度不断增加的挑战,极端事件通常与大尺度气候信号有关,如厄尔Niño南方涛动(ENSO)。尽管enso相关信息为提高水系统的灵活性和适应性提供了很好的机会,但将其纳入操作策略仍然是最优控制算法的主要挑战。在这项工作中,我们提供了一个框架,将ENSO检测的输入变量选择技术与数据驱动的控制策略相结合,以使用这些信息来改进系统操作。我们的框架在多用途的Hoa Binh水库(越南)的控制中得到了验证,表明ENSO远程连接为解决能源生产、供水和防洪之间的性能权衡提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven control of water reservoirs using El Niño Southern Oscillation indexes
Advanced modeling and control contribute to the design of efficient and sustainable water management strategies, which are challenged by the increasing frequency and intensity of extreme events often associated with large-scale climate signals, such as El Niño Southern Oscillation (ENSO). Despite ENSO-related information provides a great opportunity to make the operations of water systems more flexible and adaptive, incorporating it into an operating policy still represents a major challenge for optimal control algorithms. In this work, we contribute a framework combining Input Variable Selection techniques for ENSO detection with a data-driven control strategy to use this information for improving the system operations. Our framework is demonstrated on the control of the multipurpose Hoa Binh reservoir (Vietnam), showing that ENSO teleconnection represents a valuable information for addressing the performance tradeoffs between energy production, water supply, and flood protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信