由河内塔推广的递推关系的精确分析

A. Matsuura
{"title":"由河内塔推广的递推关系的精确分析","authors":"A. Matsuura","doi":"10.1137/1.9781611972986.6","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the recurrence relations generalized from the Tower of Hanoi problem of the form T(n, α, β) = min1≤t≤n{α T(n − t, α, β)+β S(t, 3)}, where S(t, 3) = 2t − 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers and α ≥ 2, the sequence of differences of T(n, α, β)'s, i.e., T(n, α, β) − T(n − 1, α, β), consists of numbers of the form β2iαj (i, j ≥ 0) lined in the increasing order.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Exact Analysis of the Recurrence Relations Generalized from the Tower of Hanoi\",\"authors\":\"A. Matsuura\",\"doi\":\"10.1137/1.9781611972986.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the recurrence relations generalized from the Tower of Hanoi problem of the form T(n, α, β) = min1≤t≤n{α T(n − t, α, β)+β S(t, 3)}, where S(t, 3) = 2t − 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers and α ≥ 2, the sequence of differences of T(n, α, β)'s, i.e., T(n, α, β) − T(n − 1, α, β), consists of numbers of the form β2iαj (i, j ≥ 0) lined in the increasing order.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972986.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文分析了由河内塔问题推广而来的T(n, α, β) = min1≤T≤n{α T(n−T, α, β)+β S(T, 3)}的递推关系,其中S(T, 3) = 2t−1是河内塔问题的最优解。结果表明,当α和β为自然数且α≥2时,T(n, α, β)的差值序列即T(n, α, β)−T(n−1,α, β)由β2i - αj (i, j≥0)形式的数按递增顺序排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Analysis of the Recurrence Relations Generalized from the Tower of Hanoi
In this paper, we analyze the recurrence relations generalized from the Tower of Hanoi problem of the form T(n, α, β) = min1≤t≤n{α T(n − t, α, β)+β S(t, 3)}, where S(t, 3) = 2t − 1 is the optimal solution for the 3-peg Tower of Hanoi problem. It is shown that when α and β are natural numbers and α ≥ 2, the sequence of differences of T(n, α, β)'s, i.e., T(n, α, β) − T(n − 1, α, β), consists of numbers of the form β2iαj (i, j ≥ 0) lined in the increasing order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信