{"title":"NOAA-20 VIIRS太阳扩散器BRDF变化因子角依赖性的初步研究","authors":"N. Lei, X. Xiong","doi":"10.1117/12.2324530","DOIUrl":null,"url":null,"abstract":"The NOAA-20 (formerly the Joint Polar Satellite System-1) satellite was launched on November 18, 2017. One of the five scientific instruments aboard the NOAA-20 satellite (N20) is the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS scans the earth surface in 22 spectral bands, of which 14 are denoted as the reflective solar bands (RSBs) with design band central wavelengths from 412 to 2250 nm. The VIIRS regularly performs on-orbit radiometric calibration of its RSBs, primarily through observations of an onboard sunlit solar diffuser (SD). The on-orbit change of the SD bidirectional reflectance distribution function (BRDF) value, denoted as the H-factor, is determined by an onboard solar diffuser stability monitor (SDSM). We have shown that the H-factor for the SD on the VIIRS instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite is both incident and outgoing sunlight direction dependent. This angular dependence profoundly affects the on-orbit radiometric calibration process and results. Here, we give preliminary results for the angular dependence for the N20 VIIRS SD H-factor, and compare the dependence with that for the SNPP VIIRS.","PeriodicalId":370971,"journal":{"name":"Asia-Pacific Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Initial investigation of the angular dependence of the NOAA-20 VIIRS solar diffuser BRDF change factor\",\"authors\":\"N. Lei, X. Xiong\",\"doi\":\"10.1117/12.2324530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The NOAA-20 (formerly the Joint Polar Satellite System-1) satellite was launched on November 18, 2017. One of the five scientific instruments aboard the NOAA-20 satellite (N20) is the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS scans the earth surface in 22 spectral bands, of which 14 are denoted as the reflective solar bands (RSBs) with design band central wavelengths from 412 to 2250 nm. The VIIRS regularly performs on-orbit radiometric calibration of its RSBs, primarily through observations of an onboard sunlit solar diffuser (SD). The on-orbit change of the SD bidirectional reflectance distribution function (BRDF) value, denoted as the H-factor, is determined by an onboard solar diffuser stability monitor (SDSM). We have shown that the H-factor for the SD on the VIIRS instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite is both incident and outgoing sunlight direction dependent. This angular dependence profoundly affects the on-orbit radiometric calibration process and results. Here, we give preliminary results for the angular dependence for the N20 VIIRS SD H-factor, and compare the dependence with that for the SNPP VIIRS.\",\"PeriodicalId\":370971,\"journal\":{\"name\":\"Asia-Pacific Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2324530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2324530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Initial investigation of the angular dependence of the NOAA-20 VIIRS solar diffuser BRDF change factor
The NOAA-20 (formerly the Joint Polar Satellite System-1) satellite was launched on November 18, 2017. One of the five scientific instruments aboard the NOAA-20 satellite (N20) is the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS scans the earth surface in 22 spectral bands, of which 14 are denoted as the reflective solar bands (RSBs) with design band central wavelengths from 412 to 2250 nm. The VIIRS regularly performs on-orbit radiometric calibration of its RSBs, primarily through observations of an onboard sunlit solar diffuser (SD). The on-orbit change of the SD bidirectional reflectance distribution function (BRDF) value, denoted as the H-factor, is determined by an onboard solar diffuser stability monitor (SDSM). We have shown that the H-factor for the SD on the VIIRS instrument on the Suomi National Polar-orbiting Partnership (SNPP) satellite is both incident and outgoing sunlight direction dependent. This angular dependence profoundly affects the on-orbit radiometric calibration process and results. Here, we give preliminary results for the angular dependence for the N20 VIIRS SD H-factor, and compare the dependence with that for the SNPP VIIRS.