基于fpga的协方差特征阵列行人检测

Samuele Martelli, Diego Tosato, M. Cristani, Vittorio Murino
{"title":"基于fpga的协方差特征阵列行人检测","authors":"Samuele Martelli, Diego Tosato, M. Cristani, Vittorio Murino","doi":"10.1109/ICDSC.2011.6042923","DOIUrl":null,"url":null,"abstract":"In this paper we propose a pedestrian detection algorithm and its implementation on a Xilinx Virtex-4 FPGA. The algorithm is a sliding window-based classifier, that exploits a recently designed descriptor, the covariance of features, for characterizing pedestrians in a robust way. In the paper we show how such descriptor, originally suited for maximizing accuracy performances without caring about timings, can be quickly computed in an elegant, parallel way on the FPGA board. A grid of overlapped covariances extracts information from the sliding window, and feeds a linear Support Vector Machine that performs the detection. Experiments are performed on the INRIA pedestrian benchmark; the performances of the FPGA-based detector are discussed in terms of required computational effort and accuracy, showing state-of-the-art detection performances under excellent timings and economic memory usage.","PeriodicalId":385052,"journal":{"name":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"FPGA-based pedestrian detection using array of covariance features\",\"authors\":\"Samuele Martelli, Diego Tosato, M. Cristani, Vittorio Murino\",\"doi\":\"10.1109/ICDSC.2011.6042923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a pedestrian detection algorithm and its implementation on a Xilinx Virtex-4 FPGA. The algorithm is a sliding window-based classifier, that exploits a recently designed descriptor, the covariance of features, for characterizing pedestrians in a robust way. In the paper we show how such descriptor, originally suited for maximizing accuracy performances without caring about timings, can be quickly computed in an elegant, parallel way on the FPGA board. A grid of overlapped covariances extracts information from the sliding window, and feeds a linear Support Vector Machine that performs the detection. Experiments are performed on the INRIA pedestrian benchmark; the performances of the FPGA-based detector are discussed in terms of required computational effort and accuracy, showing state-of-the-art detection performances under excellent timings and economic memory usage.\",\"PeriodicalId\":385052,\"journal\":{\"name\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSC.2011.6042923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSC.2011.6042923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种行人检测算法,并在Xilinx Virtex-4 FPGA上实现。该算法是一种基于滑动窗口的分类器,利用最近设计的描述符,特征的协方差,以鲁棒的方式表征行人。在本文中,我们展示了如何在FPGA板上以优雅的并行方式快速计算这种描述符,该描述符最初适用于在不关心时序的情况下最大化精度性能。重叠协方差的网格从滑动窗口中提取信息,并馈送线性支持向量机进行检测。在INRIA行人基准上进行了实验;从所需的计算量和精度方面讨论了基于fpga的检测器的性能,在良好的时序和经济的内存使用下显示了最先进的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based pedestrian detection using array of covariance features
In this paper we propose a pedestrian detection algorithm and its implementation on a Xilinx Virtex-4 FPGA. The algorithm is a sliding window-based classifier, that exploits a recently designed descriptor, the covariance of features, for characterizing pedestrians in a robust way. In the paper we show how such descriptor, originally suited for maximizing accuracy performances without caring about timings, can be quickly computed in an elegant, parallel way on the FPGA board. A grid of overlapped covariances extracts information from the sliding window, and feeds a linear Support Vector Machine that performs the detection. Experiments are performed on the INRIA pedestrian benchmark; the performances of the FPGA-based detector are discussed in terms of required computational effort and accuracy, showing state-of-the-art detection performances under excellent timings and economic memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信