使用隐私政策调查与GDPR违规相关的组织因素:机器学习方法

A. Aberkane, S. V. Broucke, G. Poels
{"title":"使用隐私政策调查与GDPR违规相关的组织因素:机器学习方法","authors":"A. Aberkane, S. V. Broucke, G. Poels","doi":"10.1109/TPS-ISA56441.2022.00023","DOIUrl":null,"url":null,"abstract":"The General Data Protection Regulation (GDPR) came into effect in May 2018 to ensure and safeguard data subjects’ rights. This enactment profoundly shaped, among other things, data processing organizations’ privacy policies to comply with the GDPR’s transparency requirements—for compliance with the GDPR is compulsory. Nevertheless, despite the potential goodwill to change, complying with the GDPR can be challenging for some organizations, e.g., small and medium-sized enterprises, due to, for example, a lack of resources. This study explores what factors may correlate with GDPR-compliance practices in organizations by analyzing the corresponding privacy policies. The contribution of this study is twofold. First, we have devised a classification model using machine learning (ML) and natural language processing (NLP) techniques to assess the GDPR-compliance practices promised in privacy policies regarding the GDPR core privacy policy requirement of Purpose. Using this model, we have collected a data set of 8 614 organizations active in the European Union (EU) containing organizational information and GDPR-compliance promises derived from organizations’ privacy policies, as made publicly available. Our second contribution is an analysis of the resulting classification to identify organizational factors related to the disclosure of the GDPR core privacy policy requirement of Purpose in organizations’ privacy policies.","PeriodicalId":427887,"journal":{"name":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigating Organizational Factors Associated with GDPR Noncompliance using Privacy Policies: A Machine Learning Approach\",\"authors\":\"A. Aberkane, S. V. Broucke, G. Poels\",\"doi\":\"10.1109/TPS-ISA56441.2022.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The General Data Protection Regulation (GDPR) came into effect in May 2018 to ensure and safeguard data subjects’ rights. This enactment profoundly shaped, among other things, data processing organizations’ privacy policies to comply with the GDPR’s transparency requirements—for compliance with the GDPR is compulsory. Nevertheless, despite the potential goodwill to change, complying with the GDPR can be challenging for some organizations, e.g., small and medium-sized enterprises, due to, for example, a lack of resources. This study explores what factors may correlate with GDPR-compliance practices in organizations by analyzing the corresponding privacy policies. The contribution of this study is twofold. First, we have devised a classification model using machine learning (ML) and natural language processing (NLP) techniques to assess the GDPR-compliance practices promised in privacy policies regarding the GDPR core privacy policy requirement of Purpose. Using this model, we have collected a data set of 8 614 organizations active in the European Union (EU) containing organizational information and GDPR-compliance promises derived from organizations’ privacy policies, as made publicly available. Our second contribution is an analysis of the resulting classification to identify organizational factors related to the disclosure of the GDPR core privacy policy requirement of Purpose in organizations’ privacy policies.\",\"PeriodicalId\":427887,\"journal\":{\"name\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPS-ISA56441.2022.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPS-ISA56441.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

《通用数据保护条例》(GDPR)于2018年5月生效,旨在确保和维护数据主体的权利。除其他事项外,该法规深刻地塑造了数据处理组织的隐私政策,以符合GDPR的透明度要求——因为遵守GDPR是强制性的。然而,尽管有改变的潜在善意,但对于一些组织(例如中小型企业)来说,由于缺乏资源,遵守GDPR可能具有挑战性。本研究通过分析相应的隐私政策,探讨哪些因素可能与组织中的gdpr合规实践相关。这项研究的贡献是双重的。首先,我们使用机器学习(ML)和自然语言处理(NLP)技术设计了一个分类模型,以评估隐私政策中关于GDPR核心隐私政策要求的GDPR合规性实践。使用该模型,我们收集了在欧盟(EU)活跃的8614个组织的数据集,其中包含组织信息和从组织的隐私政策中获得的gdpr合规承诺,这些都是公开的。我们的第二个贡献是对结果分类的分析,以确定与组织隐私政策中GDPR核心隐私政策要求的披露相关的组织因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating Organizational Factors Associated with GDPR Noncompliance using Privacy Policies: A Machine Learning Approach
The General Data Protection Regulation (GDPR) came into effect in May 2018 to ensure and safeguard data subjects’ rights. This enactment profoundly shaped, among other things, data processing organizations’ privacy policies to comply with the GDPR’s transparency requirements—for compliance with the GDPR is compulsory. Nevertheless, despite the potential goodwill to change, complying with the GDPR can be challenging for some organizations, e.g., small and medium-sized enterprises, due to, for example, a lack of resources. This study explores what factors may correlate with GDPR-compliance practices in organizations by analyzing the corresponding privacy policies. The contribution of this study is twofold. First, we have devised a classification model using machine learning (ML) and natural language processing (NLP) techniques to assess the GDPR-compliance practices promised in privacy policies regarding the GDPR core privacy policy requirement of Purpose. Using this model, we have collected a data set of 8 614 organizations active in the European Union (EU) containing organizational information and GDPR-compliance promises derived from organizations’ privacy policies, as made publicly available. Our second contribution is an analysis of the resulting classification to identify organizational factors related to the disclosure of the GDPR core privacy policy requirement of Purpose in organizations’ privacy policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信