K. Rouzbehi, A. Miranian, J. Ignacio Candela, A. Luna, P. Rodríguez
{"title":"多端直流电网柔性运行建议:引入柔性直流输电系统(FDCTS)","authors":"K. Rouzbehi, A. Miranian, J. Ignacio Candela, A. Luna, P. Rodríguez","doi":"10.1109/ICRERA.2014.7016553","DOIUrl":null,"url":null,"abstract":"The current route of achieving the ultimate plan for flawless operation and control of the multi-terminal DC (MTDC) grids can be significantly accelerated by learning from the vast and valuable experiences gained from the operation of the AC power grids for more than a century. This paper introduces concept of flexible DC transmission system (FDCTS), inspired by the successful operation of flexible AC transmission systems (FACTS), to provide voltage regulation, power control and load flow control within MTDC grids. Considering the current advancements in the field of power electronics, this paper recognizes DC-DC converters as the first element of the FDTCS for providing voltage and power control in MTDC grids. By use of DC-DC converters, this paper developes two elements of the FDCTS, namely the cascaded power flow controller (CPFC) and hybrid power flow controller (HPFC). In this paper, to demonstrate the eligibility of the CPFC and HPFC to play the role of an FDCTS, they are included in the DC power flow formulation for DC voltage regulation and power flow control purposes.","PeriodicalId":243870,"journal":{"name":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Proposals for flexible operation of multi-terminal DC grids: Introducing flexible DC transmission system (FDCTS)\",\"authors\":\"K. Rouzbehi, A. Miranian, J. Ignacio Candela, A. Luna, P. Rodríguez\",\"doi\":\"10.1109/ICRERA.2014.7016553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current route of achieving the ultimate plan for flawless operation and control of the multi-terminal DC (MTDC) grids can be significantly accelerated by learning from the vast and valuable experiences gained from the operation of the AC power grids for more than a century. This paper introduces concept of flexible DC transmission system (FDCTS), inspired by the successful operation of flexible AC transmission systems (FACTS), to provide voltage regulation, power control and load flow control within MTDC grids. Considering the current advancements in the field of power electronics, this paper recognizes DC-DC converters as the first element of the FDTCS for providing voltage and power control in MTDC grids. By use of DC-DC converters, this paper developes two elements of the FDCTS, namely the cascaded power flow controller (CPFC) and hybrid power flow controller (HPFC). In this paper, to demonstrate the eligibility of the CPFC and HPFC to play the role of an FDCTS, they are included in the DC power flow formulation for DC voltage regulation and power flow control purposes.\",\"PeriodicalId\":243870,\"journal\":{\"name\":\"2014 International Conference on Renewable Energy Research and Application (ICRERA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Renewable Energy Research and Application (ICRERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRERA.2014.7016553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Renewable Energy Research and Application (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2014.7016553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proposals for flexible operation of multi-terminal DC grids: Introducing flexible DC transmission system (FDCTS)
The current route of achieving the ultimate plan for flawless operation and control of the multi-terminal DC (MTDC) grids can be significantly accelerated by learning from the vast and valuable experiences gained from the operation of the AC power grids for more than a century. This paper introduces concept of flexible DC transmission system (FDCTS), inspired by the successful operation of flexible AC transmission systems (FACTS), to provide voltage regulation, power control and load flow control within MTDC grids. Considering the current advancements in the field of power electronics, this paper recognizes DC-DC converters as the first element of the FDTCS for providing voltage and power control in MTDC grids. By use of DC-DC converters, this paper developes two elements of the FDCTS, namely the cascaded power flow controller (CPFC) and hybrid power flow controller (HPFC). In this paper, to demonstrate the eligibility of the CPFC and HPFC to play the role of an FDCTS, they are included in the DC power flow formulation for DC voltage regulation and power flow control purposes.