基于多目标优化的稀疏天线阵综合

L. Pappula, D. Ghosh
{"title":"基于多目标优化的稀疏天线阵综合","authors":"L. Pappula, D. Ghosh","doi":"10.1109/AEMC.2013.7045039","DOIUrl":null,"url":null,"abstract":"The process of sparse antenna array synthesis involves the simultaneous minimization of the number of mutually conflicting parameters, such as peak sidelobe level and first null beam width. This necessitates the development of a multi objective optimization process which will provide the best compromised solution based on the application at hand. In this paper multi-objective optimization is achieved using the non-dominating sorting genetic algorithm of NSGA-II. This approach yields much more improved results as compared to single objective optimization approach and at the same time it offers flexibility in choosing the solution based on the Pareto front.","PeriodicalId":169237,"journal":{"name":"2013 IEEE Applied Electromagnetics Conference (AEMC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse antenna array synthesis using multi-objective optimization\",\"authors\":\"L. Pappula, D. Ghosh\",\"doi\":\"10.1109/AEMC.2013.7045039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of sparse antenna array synthesis involves the simultaneous minimization of the number of mutually conflicting parameters, such as peak sidelobe level and first null beam width. This necessitates the development of a multi objective optimization process which will provide the best compromised solution based on the application at hand. In this paper multi-objective optimization is achieved using the non-dominating sorting genetic algorithm of NSGA-II. This approach yields much more improved results as compared to single objective optimization approach and at the same time it offers flexibility in choosing the solution based on the Pareto front.\",\"PeriodicalId\":169237,\"journal\":{\"name\":\"2013 IEEE Applied Electromagnetics Conference (AEMC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Applied Electromagnetics Conference (AEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMC.2013.7045039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Electromagnetics Conference (AEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMC.2013.7045039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

稀疏天线阵列的合成过程涉及同时最小化相互冲突的参数,如峰值旁瓣电平和第一零波束宽度。这需要开发一个多目标优化过程,该过程将根据手头的应用程序提供最佳折衷解决方案。本文采用NSGA-II非支配排序遗传算法实现了多目标优化。与单目标优化方法相比,这种方法产生了更多的改进结果,同时它提供了基于Pareto前沿选择解决方案的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse antenna array synthesis using multi-objective optimization
The process of sparse antenna array synthesis involves the simultaneous minimization of the number of mutually conflicting parameters, such as peak sidelobe level and first null beam width. This necessitates the development of a multi objective optimization process which will provide the best compromised solution based on the application at hand. In this paper multi-objective optimization is achieved using the non-dominating sorting genetic algorithm of NSGA-II. This approach yields much more improved results as compared to single objective optimization approach and at the same time it offers flexibility in choosing the solution based on the Pareto front.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信