Percolator:动态图中的可伸缩模式发现

Sutanay Choudhury, Sumit Purohit, Peng Lin, Yinghui Wu, L. Holder, Khushbu Agarwal
{"title":"Percolator:动态图中的可伸缩模式发现","authors":"Sutanay Choudhury, Sumit Purohit, Peng Lin, Yinghui Wu, L. Holder, Khushbu Agarwal","doi":"10.1145/3159652.3160589","DOIUrl":null,"url":null,"abstract":"We demonstrate \\perco, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of \\perco is to dynamically decide and verify a small fraction of patterns and their instances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a( the feasibility of incremental pattern mining by walking through each component of \\perco, b) the efficiency and scalability of \\perco over the sheer size of real-world dynamic graphs, and c) how the user-friendly \\gui of \\perco interacts with users to support keyword-based queries that detect, browse and inspect trending patterns. We demonstrate how \\perco effectively supports event and trend analysis in social media streams and research publication, respectively.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Percolator: Scalable Pattern Discovery in Dynamic Graphs\",\"authors\":\"Sutanay Choudhury, Sumit Purohit, Peng Lin, Yinghui Wu, L. Holder, Khushbu Agarwal\",\"doi\":\"10.1145/3159652.3160589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate \\\\perco, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of \\\\perco is to dynamically decide and verify a small fraction of patterns and their instances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a( the feasibility of incremental pattern mining by walking through each component of \\\\perco, b) the efficiency and scalability of \\\\perco over the sheer size of real-world dynamic graphs, and c) how the user-friendly \\\\gui of \\\\perco interacts with users to support keyword-based queries that detect, browse and inspect trending patterns. We demonstrate how \\\\perco effectively supports event and trend analysis in social media streams and research publication, respectively.\",\"PeriodicalId\":401247,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3159652.3160589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3160589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们演示了\perco,一个用于动态图中图形模式发现的分布式系统。与传统的挖掘系统相比,Percolator提倡高效的模式挖掘方案:(1)支持使用关键字进行模式检测;(2)将增量模式挖掘与并行模式挖掘相结合;(3)支持趋势分析等分析查询。\perco的核心思想是动态地决定和验证一小部分模式及其实例,这些模式及其实例必须在响应动态图中的缓冲更新时进行检查,其总挖掘成本与图大小无关。我们演示了a(通过遍历\perco的每个组件来实现增量模式挖掘的可行性,b) \perco在真实世界动态图形的庞大规模上的效率和可扩展性,以及c) \perco的用户友好的\gui如何与用户交互,以支持基于关键字的查询,这些查询可以检测、浏览和检查趋势模式。我们分别演示了\perco如何有效地支持社交媒体流和研究出版物中的事件和趋势分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Percolator: Scalable Pattern Discovery in Dynamic Graphs
We demonstrate \perco, a distributed system for graph pattern discovery in dynamic graphs. In contrast to conventional mining systems, Percolator advocates efficient pattern mining schemes that (1) support pattern detection with keywords; (2) integrate incremental and parallel pattern mining; and (3) support analytical queries such as trend analysis. The core idea of \perco is to dynamically decide and verify a small fraction of patterns and their instances that must be inspected in response to buffered updates in dynamic graphs, with a total mining cost independent of graph size. We demonstrate a( the feasibility of incremental pattern mining by walking through each component of \perco, b) the efficiency and scalability of \perco over the sheer size of real-world dynamic graphs, and c) how the user-friendly \gui of \perco interacts with users to support keyword-based queries that detect, browse and inspect trending patterns. We demonstrate how \perco effectively supports event and trend analysis in social media streams and research publication, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信