手语自动识别数据库的研究

Darío Tilves Santiago, Carmén García Mateo, Soledad Torres Guijarro, Laura Docío Fernández, José Luis Alba Castro
{"title":"手语自动识别数据库的研究","authors":"Darío Tilves Santiago, Carmén García Mateo, Soledad Torres Guijarro, Laura Docío Fernández, José Luis Alba Castro","doi":"10.35869/hafh.v23i0.1658","DOIUrl":null,"url":null,"abstract":"Automatic sign language recognition (ASLR) is quite a complex task, not only for the difficulty of dealing with very dynamic video information, but also because almost every sign language (SL) can be considered as an under-resourced language when it comes to language technology. Spanish sign language (LSE) is one of those under-resourced languages. Developing technology for SSL implies a number of technical challenges that must be tackled down in a structured and sequential manner. In this paper, some problems of machine-learning- based ASLR are addressed. A review of publicly available datasets is given and a new one is presented. It is also discussed the current annotations methods and annotation programs. In our review of existing datasets, our main conclusion is that there is a need for more with high-quality data and annotations.","PeriodicalId":437114,"journal":{"name":"Hesperia: Anuario de Filología Hispánica","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estudio de bases de datos para el reconocimiento automático de lenguas de signos\",\"authors\":\"Darío Tilves Santiago, Carmén García Mateo, Soledad Torres Guijarro, Laura Docío Fernández, José Luis Alba Castro\",\"doi\":\"10.35869/hafh.v23i0.1658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic sign language recognition (ASLR) is quite a complex task, not only for the difficulty of dealing with very dynamic video information, but also because almost every sign language (SL) can be considered as an under-resourced language when it comes to language technology. Spanish sign language (LSE) is one of those under-resourced languages. Developing technology for SSL implies a number of technical challenges that must be tackled down in a structured and sequential manner. In this paper, some problems of machine-learning- based ASLR are addressed. A review of publicly available datasets is given and a new one is presented. It is also discussed the current annotations methods and annotation programs. In our review of existing datasets, our main conclusion is that there is a need for more with high-quality data and annotations.\",\"PeriodicalId\":437114,\"journal\":{\"name\":\"Hesperia: Anuario de Filología Hispánica\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hesperia: Anuario de Filología Hispánica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35869/hafh.v23i0.1658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hesperia: Anuario de Filología Hispánica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35869/hafh.v23i0.1658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动手语识别(ASLR)是一项相当复杂的任务,不仅因为处理非常动态的视频信息很困难,而且因为在语言技术方面,几乎所有手语(SL)都可以被认为是资源不足的语言。西班牙手语(LSE)是资源不足的语言之一。开发SSL技术意味着必须以结构化和顺序的方式解决许多技术挑战。本文讨论了基于机器学习的ASLR的一些问题。对公开可用的数据集进行了审查,并提出了一个新的数据集。讨论了当前的标注方法和标注程序。在我们对现有数据集的回顾中,我们的主要结论是需要更多高质量的数据和注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estudio de bases de datos para el reconocimiento automático de lenguas de signos
Automatic sign language recognition (ASLR) is quite a complex task, not only for the difficulty of dealing with very dynamic video information, but also because almost every sign language (SL) can be considered as an under-resourced language when it comes to language technology. Spanish sign language (LSE) is one of those under-resourced languages. Developing technology for SSL implies a number of technical challenges that must be tackled down in a structured and sequential manner. In this paper, some problems of machine-learning- based ASLR are addressed. A review of publicly available datasets is given and a new one is presented. It is also discussed the current annotations methods and annotation programs. In our review of existing datasets, our main conclusion is that there is a need for more with high-quality data and annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信