基于fpga的Bzip2数据压缩BWT加速器

W. Qiao, Zhenman Fang, Mau-Chung Frank Chang, J. Cong
{"title":"基于fpga的Bzip2数据压缩BWT加速器","authors":"W. Qiao, Zhenman Fang, Mau-Chung Frank Chang, J. Cong","doi":"10.1109/FCCM.2019.00023","DOIUrl":null,"url":null,"abstract":"The Burrows-Wheeler Transform (BWT) has played an important role in lossless data compression algorithms. To achieve a good compression ratio, the BWT block size needs to be several hundreds of kilobytes, which requires a large amount of on-chip memory resources and limits effective hardware implementations. In this paper, we analyze the bottleneck of the BWT acceleration and present a novel design to map the anti-sequential suffix sorting algorithm to FPGAs. Our design can perform BWT with a block size of up to 500KB (i.e., bzip2 level 5 compression) on the Xilinx Virtex UltraScale+ VCU1525 board, while the state-of-art FPGA implementation can only support 4KB block size. Experiments show our FPGA design can achieve ~2x speedup compared to the best CPU implementation using standard large Corpus benchmarks.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An FPGA-Based BWT Accelerator for Bzip2 Data Compression\",\"authors\":\"W. Qiao, Zhenman Fang, Mau-Chung Frank Chang, J. Cong\",\"doi\":\"10.1109/FCCM.2019.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Burrows-Wheeler Transform (BWT) has played an important role in lossless data compression algorithms. To achieve a good compression ratio, the BWT block size needs to be several hundreds of kilobytes, which requires a large amount of on-chip memory resources and limits effective hardware implementations. In this paper, we analyze the bottleneck of the BWT acceleration and present a novel design to map the anti-sequential suffix sorting algorithm to FPGAs. Our design can perform BWT with a block size of up to 500KB (i.e., bzip2 level 5 compression) on the Xilinx Virtex UltraScale+ VCU1525 board, while the state-of-art FPGA implementation can only support 4KB block size. Experiments show our FPGA design can achieve ~2x speedup compared to the best CPU implementation using standard large Corpus benchmarks.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在无损数据压缩算法中,Burrows-Wheeler变换(BWT)起着重要的作用。为了获得良好的压缩比,BWT块大小需要达到几百kb,这需要大量的片上内存资源,并且限制了有效的硬件实现。本文分析了BWT加速的瓶颈,提出了一种将反顺序后缀排序算法映射到fpga的新设计。我们的设计可以在Xilinx Virtex UltraScale+ VCU1525板上以高达500KB的块大小执行BWT(即bzip2级5压缩),而最先进的FPGA实现只能支持4KB块大小。实验表明,与使用标准大型语料库基准测试的最佳CPU实现相比,我们的FPGA设计可以实现约2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An FPGA-Based BWT Accelerator for Bzip2 Data Compression
The Burrows-Wheeler Transform (BWT) has played an important role in lossless data compression algorithms. To achieve a good compression ratio, the BWT block size needs to be several hundreds of kilobytes, which requires a large amount of on-chip memory resources and limits effective hardware implementations. In this paper, we analyze the bottleneck of the BWT acceleration and present a novel design to map the anti-sequential suffix sorting algorithm to FPGAs. Our design can perform BWT with a block size of up to 500KB (i.e., bzip2 level 5 compression) on the Xilinx Virtex UltraScale+ VCU1525 board, while the state-of-art FPGA implementation can only support 4KB block size. Experiments show our FPGA design can achieve ~2x speedup compared to the best CPU implementation using standard large Corpus benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信