Isabelle/HOL中单变量实多项式的一个决策过程

Manuel Eberl
{"title":"Isabelle/HOL中单变量实多项式的一个决策过程","authors":"Manuel Eberl","doi":"10.1145/2676724.2693166","DOIUrl":null,"url":null,"abstract":"Sturm sequences are a method for computing the number of real roots of a univariate real polynomial inside a given interval efficiently. In this paper, this fact and a number of methods to construct Sturm sequences efficiently have been formalised with the interactive theorem prover Isabelle/HOL. Building upon this, an Isabelle/HOL proof method was then implemented to prove interesting statements about the number of real roots of a univariate real polynomial and related properties such as non-negativity and monotonicity.","PeriodicalId":187702,"journal":{"name":"Proceedings of the 2015 Conference on Certified Programs and Proofs","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL\",\"authors\":\"Manuel Eberl\",\"doi\":\"10.1145/2676724.2693166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sturm sequences are a method for computing the number of real roots of a univariate real polynomial inside a given interval efficiently. In this paper, this fact and a number of methods to construct Sturm sequences efficiently have been formalised with the interactive theorem prover Isabelle/HOL. Building upon this, an Isabelle/HOL proof method was then implemented to prove interesting statements about the number of real roots of a univariate real polynomial and related properties such as non-negativity and monotonicity.\",\"PeriodicalId\":187702,\"journal\":{\"name\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Conference on Certified Programs and Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676724.2693166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676724.2693166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

Sturm序列是一种在给定区间内有效计算单变量实数多项式实根个数的方法。本文用交互定理证明者Isabelle/HOL将这一事实和一些有效构造Sturm序列的方法形式化。在此基础上,实现了Isabelle/HOL证明方法,以证明关于单变量实数多项式的实根数和相关性质(如非负性和单调性)的有趣陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decision Procedure for Univariate Real Polynomials in Isabelle/HOL
Sturm sequences are a method for computing the number of real roots of a univariate real polynomial inside a given interval efficiently. In this paper, this fact and a number of methods to construct Sturm sequences efficiently have been formalised with the interactive theorem prover Isabelle/HOL. Building upon this, an Isabelle/HOL proof method was then implemented to prove interesting statements about the number of real roots of a univariate real polynomial and related properties such as non-negativity and monotonicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信