有监督机器学习方法在GNSS信号欺骗检测中的应用与验证

Silvio Semanjski, A. Muls, I. Šemanjski, W. D. Wilde
{"title":"有监督机器学习方法在GNSS信号欺骗检测中的应用与验证","authors":"Silvio Semanjski, A. Muls, I. Šemanjski, W. D. Wilde","doi":"10.1109/ICL-GNSS.2019.8752775","DOIUrl":null,"url":null,"abstract":"Spoofing of the GNSS signals presents continuous threat to the users of safety of life applications due to unaware use of false signals in generating position and timing solution. Among numerous anti-spoofing techniques applied at different stages of the signal processing, we present approach of monitoring the cross-correlation of multiple GNSS observables and measurements as an input for supervised machine learning based approach to detect potentially spoofed GNSS signals. Both synthetic, generated in laboratory, and real-world spoofing datasets were used for verification and validation of the supervised machine learning algorithms for detection of the GNSS spoofing.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Use and Validation of Supervised Machine Learning Approach for Detection of GNSS Signal Spoofing\",\"authors\":\"Silvio Semanjski, A. Muls, I. Šemanjski, W. D. Wilde\",\"doi\":\"10.1109/ICL-GNSS.2019.8752775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoofing of the GNSS signals presents continuous threat to the users of safety of life applications due to unaware use of false signals in generating position and timing solution. Among numerous anti-spoofing techniques applied at different stages of the signal processing, we present approach of monitoring the cross-correlation of multiple GNSS observables and measurements as an input for supervised machine learning based approach to detect potentially spoofed GNSS signals. Both synthetic, generated in laboratory, and real-world spoofing datasets were used for verification and validation of the supervised machine learning algorithms for detection of the GNSS spoofing.\",\"PeriodicalId\":119581,\"journal\":{\"name\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2019.8752775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

GNSS信号的欺骗由于在生成位置和授时解的过程中不自觉地使用虚假信号,给用户的生命安全应用带来了持续的威胁。在信号处理不同阶段应用的众多反欺骗技术中,我们提出了一种监测多个GNSS观测值和测量值的相互关系的方法,作为基于监督机器学习的方法的输入,以检测潜在的欺骗GNSS信号。实验室生成的合成数据集和真实世界的欺骗数据集用于验证和验证用于检测GNSS欺骗的监督机器学习算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use and Validation of Supervised Machine Learning Approach for Detection of GNSS Signal Spoofing
Spoofing of the GNSS signals presents continuous threat to the users of safety of life applications due to unaware use of false signals in generating position and timing solution. Among numerous anti-spoofing techniques applied at different stages of the signal processing, we present approach of monitoring the cross-correlation of multiple GNSS observables and measurements as an input for supervised machine learning based approach to detect potentially spoofed GNSS signals. Both synthetic, generated in laboratory, and real-world spoofing datasets were used for verification and validation of the supervised machine learning algorithms for detection of the GNSS spoofing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信