{"title":"寻找小树宽树分解的线性时间算法","authors":"H. Bodlaender","doi":"10.1145/167088.167161","DOIUrl":null,"url":null,"abstract":"In this paper, we give for constant $k$ a linear-time algorithm that, given a graph $G=(V,E)$, determines whether the treewidth of $G$ is at most $k$ and, if so, finds a tree-decomposition of $G$ with treewidth at most $k$. A consequence is that every minor-closed class of graphs that does not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that a similar result holds when we look instead for path-decompositions with pathwidth at most some constant $k$.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1711","resultStr":"{\"title\":\"A linear time algorithm for finding tree-decompositions of small treewidth\",\"authors\":\"H. Bodlaender\",\"doi\":\"10.1145/167088.167161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give for constant $k$ a linear-time algorithm that, given a graph $G=(V,E)$, determines whether the treewidth of $G$ is at most $k$ and, if so, finds a tree-decomposition of $G$ with treewidth at most $k$. A consequence is that every minor-closed class of graphs that does not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that a similar result holds when we look instead for path-decompositions with pathwidth at most some constant $k$.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1711\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A linear time algorithm for finding tree-decompositions of small treewidth
In this paper, we give for constant $k$ a linear-time algorithm that, given a graph $G=(V,E)$, determines whether the treewidth of $G$ is at most $k$ and, if so, finds a tree-decomposition of $G$ with treewidth at most $k$. A consequence is that every minor-closed class of graphs that does not contain all planar graphs has a linear-time recognition algorithm. Another consequence is that a similar result holds when we look instead for path-decompositions with pathwidth at most some constant $k$.