{"title":"欠定卷积混合信号盲源分离的概率方法","authors":"J. M. Peterson, S. Kadambe","doi":"10.1109/ICASSP.2003.1201748","DOIUrl":null,"url":null,"abstract":"There are very few techniques that can separate signals from the convolutive mixture in the underdetermined case. We have developed a method that uses overcomplete expansion of the signal created with a time-frequency transform and that also uses the property of sparseness and a Laplacian source density model to obtain the source signals from the instantaneously mixed signals in the underdetermined case. This technique has been extended here to separate signals (a) in the case of underdetermined convolutive mixtures, and (b) in the general case of more than 2 mixtures. Here, we also propose a geometric constrained based search approach to significantly reduce the computational time of our original \"dual update\" algorithm. Several examples are provided. The results of signal separation from the convolutive mixtures indicate that an average signal to noise ratio improvement of 5.3 dB can be obtained.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A probabilistic approach for blind source separation of underdetermined convolutive mixtures\",\"authors\":\"J. M. Peterson, S. Kadambe\",\"doi\":\"10.1109/ICASSP.2003.1201748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are very few techniques that can separate signals from the convolutive mixture in the underdetermined case. We have developed a method that uses overcomplete expansion of the signal created with a time-frequency transform and that also uses the property of sparseness and a Laplacian source density model to obtain the source signals from the instantaneously mixed signals in the underdetermined case. This technique has been extended here to separate signals (a) in the case of underdetermined convolutive mixtures, and (b) in the general case of more than 2 mixtures. Here, we also propose a geometric constrained based search approach to significantly reduce the computational time of our original \\\"dual update\\\" algorithm. Several examples are provided. The results of signal separation from the convolutive mixtures indicate that an average signal to noise ratio improvement of 5.3 dB can be obtained.\",\"PeriodicalId\":104473,\"journal\":{\"name\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2003.1201748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1201748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A probabilistic approach for blind source separation of underdetermined convolutive mixtures
There are very few techniques that can separate signals from the convolutive mixture in the underdetermined case. We have developed a method that uses overcomplete expansion of the signal created with a time-frequency transform and that also uses the property of sparseness and a Laplacian source density model to obtain the source signals from the instantaneously mixed signals in the underdetermined case. This technique has been extended here to separate signals (a) in the case of underdetermined convolutive mixtures, and (b) in the general case of more than 2 mixtures. Here, we also propose a geometric constrained based search approach to significantly reduce the computational time of our original "dual update" algorithm. Several examples are provided. The results of signal separation from the convolutive mixtures indicate that an average signal to noise ratio improvement of 5.3 dB can be obtained.