{"title":"从连续时态气象数据中归纳平均输出预测树","authors":"Dima Alberg, Mark Last, Roni Neuman, Avi Sharon","doi":"10.1109/ICDMW.2009.30","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for fast data-driven construction of regression trees from temporal datasets including continuous data streams. The proposed Mean Output Prediction Tree (MOPT) algorithm transforms continuous temporal data into two statistical moments according to a user-specified time resolution and builds a regression tree for estimating the prediction interval of the output (dependent) variable. Results on two benchmark data sets show that the MOPT algorithm produces more accurate and easily interpretable prediction models than other state-of-the-art regression tree methods.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Induction of Mean Output Prediction Trees from Continuous Temporal Meteorological Data\",\"authors\":\"Dima Alberg, Mark Last, Roni Neuman, Avi Sharon\",\"doi\":\"10.1109/ICDMW.2009.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel method for fast data-driven construction of regression trees from temporal datasets including continuous data streams. The proposed Mean Output Prediction Tree (MOPT) algorithm transforms continuous temporal data into two statistical moments according to a user-specified time resolution and builds a regression tree for estimating the prediction interval of the output (dependent) variable. Results on two benchmark data sets show that the MOPT algorithm produces more accurate and easily interpretable prediction models than other state-of-the-art regression tree methods.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Induction of Mean Output Prediction Trees from Continuous Temporal Meteorological Data
In this paper, we present a novel method for fast data-driven construction of regression trees from temporal datasets including continuous data streams. The proposed Mean Output Prediction Tree (MOPT) algorithm transforms continuous temporal data into two statistical moments according to a user-specified time resolution and builds a regression tree for estimating the prediction interval of the output (dependent) variable. Results on two benchmark data sets show that the MOPT algorithm produces more accurate and easily interpretable prediction models than other state-of-the-art regression tree methods.