C. Siegef, V. Zieglerl, U. Prechtel, B. Schonlinner, H. Schumacher
{"title":"基于新型双态微带线的ka波段RF-MEMS移相器方法","authors":"C. Siegef, V. Zieglerl, U. Prechtel, B. Schonlinner, H. Schumacher","doi":"10.1109/EMICC.2007.4412739","DOIUrl":null,"url":null,"abstract":"This paper presents the design and realization of a 3-bit RF-MEMS based phase shifter at 34 GHz using a very-low complexity and highly reliable RF-MEMS technology on silicon. The three bits of the circuit use different techniques to achieve the necessary phase shifts. One new design technique, the dual-state microstrip line, is enabled by the presented RF-MEMS technology and changes the effective epsivr of a microstrip transmission line by lifting part of it into the air. This leads to a change in the electrical length of the microstrip transmission line, which in turn results in a phase shift. The related insertion loss of the 45deg bit is less then -0.35 dB and a matching better -19 dB for both switching states. Further on, a loaded-line bit with 45deg of phase shift is realized by switching between a capacitive and an inductive load. The capacitive switching state shows an insertion loss of -0.4 dB and a matching better -13 dB, while the inductive load has an insertion loss of -0.7 dB and a matching of -25 dB. The loaded-line bit combined with the dual-state microstrip line is used for the 90deg-bit. An additional miniaturized switched line phase shifter is implemented for the 180deg state. The three bits were combined and measured in all states. The results of the 3-bit phase shifter are shown with a mean insertion loss of -2.2 dB and a phase derivation of 13.25deg at 34 GHz.","PeriodicalId":436391,"journal":{"name":"2007 European Microwave Integrated Circuit Conference","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Ka-band RF-MEMS phase shifter approach based on a novel dual-state microstrip line\",\"authors\":\"C. Siegef, V. Zieglerl, U. Prechtel, B. Schonlinner, H. Schumacher\",\"doi\":\"10.1109/EMICC.2007.4412739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and realization of a 3-bit RF-MEMS based phase shifter at 34 GHz using a very-low complexity and highly reliable RF-MEMS technology on silicon. The three bits of the circuit use different techniques to achieve the necessary phase shifts. One new design technique, the dual-state microstrip line, is enabled by the presented RF-MEMS technology and changes the effective epsivr of a microstrip transmission line by lifting part of it into the air. This leads to a change in the electrical length of the microstrip transmission line, which in turn results in a phase shift. The related insertion loss of the 45deg bit is less then -0.35 dB and a matching better -19 dB for both switching states. Further on, a loaded-line bit with 45deg of phase shift is realized by switching between a capacitive and an inductive load. The capacitive switching state shows an insertion loss of -0.4 dB and a matching better -13 dB, while the inductive load has an insertion loss of -0.7 dB and a matching of -25 dB. The loaded-line bit combined with the dual-state microstrip line is used for the 90deg-bit. An additional miniaturized switched line phase shifter is implemented for the 180deg state. The three bits were combined and measured in all states. The results of the 3-bit phase shifter are shown with a mean insertion loss of -2.2 dB and a phase derivation of 13.25deg at 34 GHz.\",\"PeriodicalId\":436391,\"journal\":{\"name\":\"2007 European Microwave Integrated Circuit Conference\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Microwave Integrated Circuit Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMICC.2007.4412739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Microwave Integrated Circuit Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMICC.2007.4412739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Ka-band RF-MEMS phase shifter approach based on a novel dual-state microstrip line
This paper presents the design and realization of a 3-bit RF-MEMS based phase shifter at 34 GHz using a very-low complexity and highly reliable RF-MEMS technology on silicon. The three bits of the circuit use different techniques to achieve the necessary phase shifts. One new design technique, the dual-state microstrip line, is enabled by the presented RF-MEMS technology and changes the effective epsivr of a microstrip transmission line by lifting part of it into the air. This leads to a change in the electrical length of the microstrip transmission line, which in turn results in a phase shift. The related insertion loss of the 45deg bit is less then -0.35 dB and a matching better -19 dB for both switching states. Further on, a loaded-line bit with 45deg of phase shift is realized by switching between a capacitive and an inductive load. The capacitive switching state shows an insertion loss of -0.4 dB and a matching better -13 dB, while the inductive load has an insertion loss of -0.7 dB and a matching of -25 dB. The loaded-line bit combined with the dual-state microstrip line is used for the 90deg-bit. An additional miniaturized switched line phase shifter is implemented for the 180deg state. The three bits were combined and measured in all states. The results of the 3-bit phase shifter are shown with a mean insertion loss of -2.2 dB and a phase derivation of 13.25deg at 34 GHz.