机器学习管道可视化的自动生成

Lei Liu, Wei-Peng Chen, M. Bahrami, M. Prasad
{"title":"机器学习管道可视化的自动生成","authors":"Lei Liu, Wei-Peng Chen, M. Bahrami, M. Prasad","doi":"10.1145/3551349.3559504","DOIUrl":null,"url":null,"abstract":"Visualization is very important for machine learning (ML) pipelines because it can show explorations of the data to inspire data scientists and show explanations of the pipeline to improve understandability. In this paper, we present a novel approach that automatically generates visualizations for ML pipelines by learning visualizations from highly-upvoted Kaggle pipelines. The solution extracts both code and dataset features from these high-quality human-written pipelines and corresponding training datasets, learns the mapping rules from code and dataset features to visualizations using association rule mining (ARM), and finally uses the learned rules to predict visualizations for unseen ML pipelines. The evaluation results show that the proposed solution is feasible and effective to generate visualizations for ML pipelines.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Generation of Visualizations for Machine Learning Pipelines\",\"authors\":\"Lei Liu, Wei-Peng Chen, M. Bahrami, M. Prasad\",\"doi\":\"10.1145/3551349.3559504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization is very important for machine learning (ML) pipelines because it can show explorations of the data to inspire data scientists and show explanations of the pipeline to improve understandability. In this paper, we present a novel approach that automatically generates visualizations for ML pipelines by learning visualizations from highly-upvoted Kaggle pipelines. The solution extracts both code and dataset features from these high-quality human-written pipelines and corresponding training datasets, learns the mapping rules from code and dataset features to visualizations using association rule mining (ARM), and finally uses the learned rules to predict visualizations for unseen ML pipelines. The evaluation results show that the proposed solution is feasible and effective to generate visualizations for ML pipelines.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可视化对于机器学习(ML)管道非常重要,因为它可以显示对数据的探索,以激励数据科学家,并显示对管道的解释,以提高可理解性。在本文中,我们提出了一种新的方法,通过学习高度支持的Kaggle管道的可视化,自动生成ML管道的可视化。该解决方案从这些高质量的人工编写的管道和相应的训练数据集中提取代码和数据集特征,使用关联规则挖掘(ARM)学习从代码和数据集特征到可视化的映射规则,最后使用学习到的规则来预测未见的ML管道的可视化。评价结果表明,该方法对机器学习管道的可视化生成是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Generation of Visualizations for Machine Learning Pipelines
Visualization is very important for machine learning (ML) pipelines because it can show explorations of the data to inspire data scientists and show explanations of the pipeline to improve understandability. In this paper, we present a novel approach that automatically generates visualizations for ML pipelines by learning visualizations from highly-upvoted Kaggle pipelines. The solution extracts both code and dataset features from these high-quality human-written pipelines and corresponding training datasets, learns the mapping rules from code and dataset features to visualizations using association rule mining (ARM), and finally uses the learned rules to predict visualizations for unseen ML pipelines. The evaluation results show that the proposed solution is feasible and effective to generate visualizations for ML pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信