基于两层竞争Hopfield神经网络的晶圆缺陷检测

Chan-Yu Chang, Si-Yan Lin, M. Jeng
{"title":"基于两层竞争Hopfield神经网络的晶圆缺陷检测","authors":"Chan-Yu Chang, Si-Yan Lin, M. Jeng","doi":"10.1109/ICNSC.2005.1461344","DOIUrl":null,"url":null,"abstract":"The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Two-layer competitive Hopfield neural network for wafer defect detection\",\"authors\":\"Chan-Yu Chang, Si-Yan Lin, M. Jeng\",\"doi\":\"10.1109/ICNSC.2005.1461344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

晶圆片上缺陷的出现可能导致成品率的下降。缺陷区域通常是借助扫描电子显微镜通过视觉判断来识别的,许多人肉眼检查晶圆并手工标记其缺陷区域,这导致了大量的人员成本。此外,由于人的疲劳,可能会引入潜在的误判。本文提出了一种两层Hopfield神经网络,称为竞争Hopfield晶圆缺陷检测神经网络(CHWDNN),用于检测晶圆图像的缺陷区域。CHWDNN将原图像平面上的单层二维Hopfield神经网络扩展为二层三维Hopfield神经网络,并在其三维上实现缺陷检测。通过扩展的三维结构,该网络能够将像素的空间信息整合到像素分类过程中。实验结果表明,CHWDNN能较好地识别出晶圆图像上的缺陷区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-layer competitive Hopfield neural network for wafer defect detection
The occurrence of defect on a wafer may result in losing the yield ratio. The defective regions are usually identified through visual judgment with the aid of a scanning electron microscope and many people visually check wafers and hand-mark their defective regions leading to a significant amount of personnel cost. In addition, potential misjudgment may be introduced due to human fatigue. In this paper, a two-layer Hopfield neural network called the competitive Hopfield wafer-defect detection neural network (CHWDNN) is proposed for detecting the defective regions of wafer image. The CHWDNN extends the one-layer 2-D Hopfield neural network at the original image plane to a two-layer 3-D Hopfield neural network with defect detection to be implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating a pixel's spatial information into a pixel-classifying procedure. The experimental results show the CHWDNN successfully identifies the defective regions on wafers images with good performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信