基于互补集成EMD的金融时间序列能量频谱

Tim Leung, Theodore Zhao
{"title":"基于互补集成EMD的金融时间序列能量频谱","authors":"Tim Leung, Theodore Zhao","doi":"10.2139/ssrn.3573243","DOIUrl":null,"url":null,"abstract":"We discuss the method of complementary ensemble empirical mode decomposition (CEEMD) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allows us to reconstruct the time series based on different timescales. Using Hilbert spectral analysis, we compute the associated instantaneous energy-frequency spectrum to illustrate and interpret the properties of various timescales embedded in the original time series.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Frequency Spectrum for Financial Time Series via Complementary Ensemble EMD\",\"authors\":\"Tim Leung, Theodore Zhao\",\"doi\":\"10.2139/ssrn.3573243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the method of complementary ensemble empirical mode decomposition (CEEMD) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allows us to reconstruct the time series based on different timescales. Using Hilbert spectral analysis, we compute the associated instantaneous energy-frequency spectrum to illustrate and interpret the properties of various timescales embedded in the original time series.\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3573243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3573243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了分析非平稳金融时间序列的互补系综经验模态分解方法。这种噪声辅助方法将任何时间序列分解为许多固有模态函数,以及相应的瞬时幅度和瞬时频率。不同的模态组合使我们能够基于不同的时间尺度重建时间序列。利用希尔伯特谱分析,我们计算了相关的瞬时能量频谱,以说明和解释原始时间序列中嵌入的各种时间尺度的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Frequency Spectrum for Financial Time Series via Complementary Ensemble EMD
We discuss the method of complementary ensemble empirical mode decomposition (CEEMD) for analyzing nonstationary financial time series. This noise-assisted approach decomposes any time series into a number of intrinsic mode functions, along with the corresponding instantaneous amplitudes and instantaneous frequencies. Different combinations of modes allows us to reconstruct the time series based on different timescales. Using Hilbert spectral analysis, we compute the associated instantaneous energy-frequency spectrum to illustrate and interpret the properties of various timescales embedded in the original time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信