求解Fredholm积分方程的非多项式分数样条法

Rahel Jaza, F. Hamasalh
{"title":"求解Fredholm积分方程的非多项式分数样条法","authors":"Rahel Jaza, F. Hamasalh","doi":"10.58205/jiamcs.v2i3.51","DOIUrl":null,"url":null,"abstract":" A new type of non-polynomial fractional spline function for approximating solutions of Fredholm-integral equations has been presented. For this purpose, we used a new idea of fractional continuity conditions by using the Caputo fractional derivative and the Riemann Liouville fractional integration to generate fractional spline derivatives. Moreover, the convergence analysis is studied with proven theorems. The approach is also well-explained and supported by four computational numerical findings, which show that it is both accurate and simple to apply.","PeriodicalId":289834,"journal":{"name":"Journal of Innovative Applied Mathematics and Computational Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-polynomial fractional spline method for solving Fredholm integral equations\",\"authors\":\"Rahel Jaza, F. Hamasalh\",\"doi\":\"10.58205/jiamcs.v2i3.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" A new type of non-polynomial fractional spline function for approximating solutions of Fredholm-integral equations has been presented. For this purpose, we used a new idea of fractional continuity conditions by using the Caputo fractional derivative and the Riemann Liouville fractional integration to generate fractional spline derivatives. Moreover, the convergence analysis is studied with proven theorems. The approach is also well-explained and supported by four computational numerical findings, which show that it is both accurate and simple to apply.\",\"PeriodicalId\":289834,\"journal\":{\"name\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58205/jiamcs.v2i3.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Applied Mathematics and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58205/jiamcs.v2i3.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一类用于逼近fredholm积分方程解的非多项式分数样条函数。为此,我们利用分数阶连续条件的新思想,利用Caputo分数阶导数和Riemann Liouville分数阶积分生成分数阶样条导数。并利用已证明的定理研究了收敛性分析。该方法还得到了四个计算数值结果的很好解释和支持,表明该方法既准确又易于应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-polynomial fractional spline method for solving Fredholm integral equations
 A new type of non-polynomial fractional spline function for approximating solutions of Fredholm-integral equations has been presented. For this purpose, we used a new idea of fractional continuity conditions by using the Caputo fractional derivative and the Riemann Liouville fractional integration to generate fractional spline derivatives. Moreover, the convergence analysis is studied with proven theorems. The approach is also well-explained and supported by four computational numerical findings, which show that it is both accurate and simple to apply.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信