Ketan Tang, O. Au, Lu Fang, Zhiding Yu, Yuanfang Guo
{"title":"基于自回归模型和高斯-塞德尔优化的图像插值","authors":"Ketan Tang, O. Au, Lu Fang, Zhiding Yu, Yuanfang Guo","doi":"10.1109/ICIG.2011.155","DOIUrl":null,"url":null,"abstract":"In this paper we propose a simple yet effective image interpolation algorithm based on autoregressive model. Unlike existing algorithms which rely on low resolution pixels to estimate interpolation coefficients, we optimize the interpolation coefficients and high resolution pixel values jointly from one optimization problem. Although the two sets of variables are coupled in the cost function, the problem can be effectively solved using Gauss-Seidel method. We prove the iterations are guaranteed to converge. Experiments show that on average we have over 3dB gain compared to bicubic interpolation and over 0.1dB gain compared to SAI.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Image Interpolation Using Autoregressive Model and Gauss-Seidel Optimization\",\"authors\":\"Ketan Tang, O. Au, Lu Fang, Zhiding Yu, Yuanfang Guo\",\"doi\":\"10.1109/ICIG.2011.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a simple yet effective image interpolation algorithm based on autoregressive model. Unlike existing algorithms which rely on low resolution pixels to estimate interpolation coefficients, we optimize the interpolation coefficients and high resolution pixel values jointly from one optimization problem. Although the two sets of variables are coupled in the cost function, the problem can be effectively solved using Gauss-Seidel method. We prove the iterations are guaranteed to converge. Experiments show that on average we have over 3dB gain compared to bicubic interpolation and over 0.1dB gain compared to SAI.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Interpolation Using Autoregressive Model and Gauss-Seidel Optimization
In this paper we propose a simple yet effective image interpolation algorithm based on autoregressive model. Unlike existing algorithms which rely on low resolution pixels to estimate interpolation coefficients, we optimize the interpolation coefficients and high resolution pixel values jointly from one optimization problem. Although the two sets of variables are coupled in the cost function, the problem can be effectively solved using Gauss-Seidel method. We prove the iterations are guaranteed to converge. Experiments show that on average we have over 3dB gain compared to bicubic interpolation and over 0.1dB gain compared to SAI.